Skip to main content

A set of AI tools for working with Cognite Data Fusion in Python.

Project description

cognite-ai

A set of AI tools for working with CDF in Python.

MemoryVectorStore

Store and query vector embeddings created from CDF. This can enable a bunch of use cases where the number of vectors aren't that big.

Install the package

%pip install cognite-ai

Then you can create vectors from text (both multiple lines or a list of strings) like this


from cognite.ai import MemoryVectorStore
from cognite.client import CogniteClient

client = CogniteClient()
vector_store = MemoryVectorStore(client)

vector_store.store_text("Hi, I am a software engineer working for Cognite.")
vector_store.store_text("The moon is orbiting the earth, which is orbiting the sun.")
vector_store.store_text("Coffee can be a great way to stay awake.")

vector_store.query_text("I am tired, what can I do?")

Smart data frames

Chat with your data using LLMs. Built on top of PandasAI version 2.2.15. If you have loaded data into a Pandas dataframe, you can run

Install the package

%pip install cognite-ai

Chat with your data

from cognite.client import CogniteClient
from cognite.ai import load_pandasai

client = CogniteClient()
SmartDataframe, SmartDatalake, Agent = await load_pandasai()

workorders_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workorders", limit=-1)
workitems_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workitems", limit=-1)
workorder2items_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workorder2items", limit=-1)
workorder2assets_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workorder2assets", limit=-1)
assets_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "assets", limit=-1)

smart_lake_df = SmartDatalake([workorders_df, workitems_df, assets_df, workorder2items_df, workorder2assets_df], cognite_client=client)
smart_lake_df.chat("Which workorders are the longest, and what work items do they have?")


s_workorders_df = SmartDataframe(workorders_df, cognite_client=client)
s_workorders_df.chat('Which 5 work orders are the longest?')

Configure LLM parameters

params = {
    "model": "gpt-35-turbo",
    "temperature": 0.5
}

s_workorders_df = SmartDataframe(workorders_df, cognite_client=client, params=params)

Pandas AI agent

We can also

from cognite.client import CogniteClient
from cognite.ai import load_pandasai

client = CogniteClient()
SmartDataframe, SmartDatalake, Agent = await load_pandasai()

# Create example data
sales_by_country_df = pd.DataFrame({
    "country": ["United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China"],
    "revenue": [5000, 3200, 2900, 4100, 2300, 2100, 2500, 2600, 4500, 7000]
})

agent = Agent(sales_by_country_df, cognite_client=client)

print(agent.chat("Which are the top 5 countries by sales?"))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

andeplane_cognite_ai-0.5.1.tar.gz (6.1 kB view details)

Uploaded Source

Built Distribution

andeplane_cognite_ai-0.5.1-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file andeplane_cognite_ai-0.5.1.tar.gz.

File metadata

  • Download URL: andeplane_cognite_ai-0.5.1.tar.gz
  • Upload date:
  • Size: 6.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.10

File hashes

Hashes for andeplane_cognite_ai-0.5.1.tar.gz
Algorithm Hash digest
SHA256 df56a9389a334b568ee6b49699858ba250adda8fc617c727b4113dcb01448e52
MD5 157a739b66325d2fe6fb021ad9364492
BLAKE2b-256 fb8bb01a6ffb35d83b2653e4fcaf366e75f1a3c44da225170877dcd40bddd638

See more details on using hashes here.

File details

Details for the file andeplane_cognite_ai-0.5.1-py3-none-any.whl.

File metadata

File hashes

Hashes for andeplane_cognite_ai-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a50925647f1c2df03eb4a2894e1938e65793a6f4de3632c5270bfbe8623f99e9
MD5 edb9cbf5e761418436e0d569b0594cef
BLAKE2b-256 fb4732560a7012e301a6a77374d9bed96bdc174aa4c5a807ce25c940a74f5409

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page