Skip to main content

A set of AI tools for working with Cognite Data Fusion in Python.

Project description

cognite-ai

A set of AI tools for working with CDF in Python.

MemoryVectorStore

Store and query vector embeddings created from CDF. This can enable a bunch of use cases where the number of vectors aren't that big.

Install the package

%pip install cognite-ai

Then you can create vectors from text (both multiple lines or a list of strings) like this


from cognite.ai import MemoryVectorStore
from cognite.client import CogniteClient

client = CogniteClient()
vector_store = MemoryVectorStore(client)

vector_store.store_text("Hi, I am a software engineer working for Cognite.")
vector_store.store_text("The moon is orbiting the earth, which is orbiting the sun.")
vector_store.store_text("Coffee can be a great way to stay awake.")

vector_store.query_text("I am tired, what can I do?")

Smart data frames

Chat with your data using LLMs. Built on top of PandasAI version 1.5.8. If you have loaded data into a Pandas dataframe, you can run

Install the package

%pip install cognite-ai

Chat with your data

from cognite.client import CogniteClient
from cognite.ai import load_pandasai

client = CogniteClient()
SmartDataframe, SmartDatalake = await load_pandasai()

workorders_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workorders", limit=-1)
workitems_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workitems", limit=-1)
workorder2items_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workorder2items", limit=-1)
workorder2assets_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "workorder2assets", limit=-1)
assets_df = client.raw.rows.retrieve_dataframe("tutorial_apm", "assets", limit=-1)

smart_lake_df = SmartDatalake([workorders_df, workitems_df, assets_df, workorder2items_df, workorder2assets_df], cognite_client=client)
smart_lake_df.chat("Which workorders are the longest, and what work items do they have?")


s_workorders_df = SmartDataframe(workorders_df, cognite_client=client)
s_workorders_df.chat('Which 5 work orders are the longest?')

Configure LLM parameters

params = {
    "model": "gpt-35-turbo",
    "temperature": 0.5
}

s_workorders_df = SmartDataframe(workorders_df, cognite_client=client, params=params)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

andeplane_cognite_ai-0.4.9.tar.gz (5.8 kB view details)

Uploaded Source

Built Distribution

andeplane_cognite_ai-0.4.9-py3-none-any.whl (7.3 kB view details)

Uploaded Python 3

File details

Details for the file andeplane_cognite_ai-0.4.9.tar.gz.

File metadata

  • Download URL: andeplane_cognite_ai-0.4.9.tar.gz
  • Upload date:
  • Size: 5.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.10

File hashes

Hashes for andeplane_cognite_ai-0.4.9.tar.gz
Algorithm Hash digest
SHA256 9d9a696c6fcc266aa1a21d5fcbbe6c925145d35593fb486d81402fe05d2fc3a0
MD5 a93e35e86464eb271c67fd6a2e89e5f3
BLAKE2b-256 46bd3625ddd838edb1eb46ec4f2528c45e182c9005970d2e9f0e931faec3babd

See more details on using hashes here.

File details

Details for the file andeplane_cognite_ai-0.4.9-py3-none-any.whl.

File metadata

File hashes

Hashes for andeplane_cognite_ai-0.4.9-py3-none-any.whl
Algorithm Hash digest
SHA256 a5b1c858acc3db4f8d1d6e2fbd6aa8b3b12bf36dc7f57c8ef7366694306dc848
MD5 0cb971a2be05826dcbfae0fb91642553
BLAKE2b-256 e3a1dee0a9d1c21b0724adce31485e009f8e74f588d052f4564f78291bd5ed52

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page