Skip to main content

AnglE-optimize Text Embeddings

Project description

EN | 简体中文

AnglE📐: Angle-optimized Text Embeddings

It is Angle 📐, not Angel 👼.

🔥 A New SOTA for Semantic Textual Similarity!

🔥 Our universal sentence embedding WhereIsAI/UAE-Large-V1 achieves SOTA on the MTEB Leaderboard with an average score of 64.64!

https://arxiv.org/abs/2309.12871 PyPI version PyPI Downloads http://makeapullrequest.com

PWC PWC PWC PWC PWC PWC PWC

📊 Click to show MTEB Leaderboard of AnglE

📊 Click to show STS benchmark results of AnglE

🤗 Pretrained Models

🤗 HF Backbone LLM Language Prompt Datasets Pooling Strategy
WhereIsAI/UAE-Large-V1 / N EN N / cls
SeanLee97/angle-llama-13b-nli NousResearch/Llama-2-13b-hf Y EN Prompts.A multi_nli + snli last token
SeanLee97/angle-llama-7b-nli-v2 NousResearch/Llama-2-7b-hf Y EN Prompts.A multi_nli + snli last token
SeanLee97/angle-llama-7b-nli-20231027 NousResearch/Llama-2-7b-hf Y EN Prompts.A multi_nli + snli last token
SeanLee97/angle-bert-base-uncased-nli-en-v1 bert-base-uncased N EN N multi_nli + snli cls_avg
SeanLee97/angle-roberta-wwm-base-zhnli-v1 hfl/chinese-roberta-wwm-ext N ZH-CN N zh_nli_all cls
SeanLee97/angle-llama-7b-zhnli-v1 NousResearch/Llama-2-7b-hf Y ZH-CN Prompts.B zh_nli_all last token

📝 Training Details:

1) SeanLee97/angle-llama-7b-nli-20231027

We fine-tuned AnglE-LLaMA using 4 RTX 3090 Ti (24GB), the training script is as follows:

CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --nproc_per_node=4 --master_port=1234 train_angle.py \
--task NLI-STS --save_dir ckpts/NLI-STS-angle-llama-7b \
--w2 35 --learning_rate 2e-4 --maxlen 45 \
--lora_r 32 --lora_alpha 32 --lora_dropout 0.1 \
--save_steps 200 --batch_size 160 --seed 42 --do_eval 0 --load_kbit 4 --gradient_accumulation_steps 4 --epochs 1 

The evaluation script is as follows:

CUDA_VISIBLE_DEVICES=0,1 python eval.py \
    --load_kbit 16 \
    --model_name_or_path NousResearch/Llama-2-7b-hf \
    --lora_weight SeanLee97/angle-llama-7b-nli-20231027

Results

English STS Results

Model STS12 STS13 STS14 STS15 STS16 STSBenchmark SICKRelatedness Avg.
SeanLee97/angle-llama-7b-nli-20231027 78.68 90.58 85.49 89.56 86.91 88.92 81.18 85.90
SeanLee97/angle-llama-7b-nli-v2 79.00 90.56 85.79 89.43 87.00 88.97 80.94 85.96
SeanLee97/angle-llama-13b-nli 79.33 90.65 86.89 90.45 87.32 89.69 81.32 86.52
SeanLee97/angle-bert-base-uncased-nli-en-v1 75.09 85.56 80.66 86.44 82.47 85.16 81.23 82.37

Chinese STS Results

Model ATEC BQ LCQMC PAWSX STS-B SOHU-dd SOHU-dc Avg.
^shibing624/text2vec-bge-large-chinese 38.41 61.34 71.72 35.15 76.44 71.81 63.15 59.72
^shibing624/text2vec-base-chinese-paraphrase 44.89 63.58 74.24 40.90 78.93 76.70 63.30 63.08
SeanLee97/angle-roberta-wwm-base-zhnli-v1 49.49 72.47 78.33 59.13 77.14 72.36 60.53 67.06
SeanLee97/angle-llama-7b-zhnli-v1 50.44 71.95 78.90 56.57 81.11 68.11 52.02 65.59

^ denotes baselines, their results are retrieved from: https://github.com/shibing624/text2vec

Usage

AnglE supports two APIs, one is the transformers API, the other is the AnglE API. If you want to use the AnglE API, please install AnglE first:

python -m pip install -U angle-emb

UAE

  1. For Retrieval Purposes

For retrieval purposes, please use the prompt Prompts.C.

from angle_emb import AnglE, Prompts

angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
angle.set_prompt(prompt=Prompts.C)
vec = angle.encode({'text': 'hello world'}, to_numpy=True)
print(vec)
vecs = angle.encode([{'text': 'hello world1', 'text': 'hello world2'}], to_numpy=True)
print(vecs)
  1. For non-Retrieval Purposes
from angle_emb import AnglE

angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
vec = angle.encode('hello world', to_numpy=True)
print(vec)
vecs = angle.encode(['hello world1', 'hello world2'], to_numpy=True)
print(vecs)
Difference between retrieval and non-retrieval sentence embeddings. [click to expand]

In UAE, we use different approaches for retrieval and non-retrieval tasks, each serving a different purpose.

Retrieval tasks aim to find relevant documents, and as a result, the related documents may not have strict semantic similarities to each other.

For instance, when querying "How about ChatGPT?", the related documents are those that contain information related to "ChatGPT," such as "ChatGPT is amazing..." or "ChatGPT is bad....".

Conversely, non-retrieval tasks, such as semantic textual similarity, require sentences that are semantically similar.

For example, a sentence semantically similar to "How about ChatGPT?" could be "What is your opinion about ChatGPT?".

To distinguish between these two types of tasks, we use different prompts.

For retrieval tasks, we use the prompt "Represent this sentence for searching relevant passages: {text}" (Prompts.C in angle_emb).

For non-retrieval tasks, we set the prompt to empty, i.e., just input your text without specifying a prompt.

So, if your scenario is retrieval-related, it is highly recommended to set the prompt with angle.set_prompt(prompt=Prompts.C). If not, leave the prompt empty or use angle.set_prompt(prompt=None).

Angle-LLaMA

  1. AnglE
from angle_emb import AnglE, Prompts

angle = AnglE.from_pretrained('NousResearch/Llama-2-7b-hf', pretrained_lora_path='SeanLee97/angle-llama-7b-nli-v2')

print('All predefined prompts:', Prompts.list_prompts())
angle.set_prompt(prompt=Prompts.A)
print('prompt:', angle.prompt)
vec = angle.encode({'text': 'hello world'}, to_numpy=True)
print(vec)
vecs = angle.encode([{'text': 'hello world1'}, {'text': 'hello world2'}], to_numpy=True)
print(vecs)
  1. transformers
from angle_emb import AnglE
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel, PeftConfig

peft_model_id = 'SeanLee97/angle-llama-7b-nli-v2'
config = PeftConfig.from_pretrained(peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path).bfloat16().cuda()
model = PeftModel.from_pretrained(model, peft_model_id).cuda()

def decorate_text(text: str):
    return Prompts.A.format(text=text)

inputs = 'hello world!'
tok = tokenizer([decorate_text(inputs)], return_tensors='pt')
for k, v in tok.items():
    tok[k] = v.cuda()
vec = model(output_hidden_states=True, **tok).hidden_states[-1][:, -1].float().detach().cpu().numpy()
print(vec)

Angle-BERT

  1. AnglE
from angle_emb import AnglE

angle = AnglE.from_pretrained('SeanLee97/angle-bert-base-uncased-nli-en-v1', pooling_strategy='cls_avg').cuda()
vec = angle.encode('hello world', to_numpy=True)
print(vec)
vecs = angle.encode(['hello world1', 'hello world2'], to_numpy=True)
print(vecs)
  1. transformers
import torch
from transformers import AutoModel, AutoTokenizer

model_id = 'SeanLee97/angle-bert-base-uncased-nli-en-v1'
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModel.from_pretrained(model_id).cuda()

inputs = 'hello world!'
tok = tokenizer([inputs], return_tensors='pt')
for k, v in tok.items():
    tok[k] = v.cuda()
hidden_state = model(**tok).last_hidden_state
vec = (hidden_state[:, 0] + torch.mean(hidden_state, dim=1)) / 2.0
print(vec)

Train Custom AnglE Model

1. Train NLI

  1. Prepare your gpu environment

  2. Install python dependencies

python -m pip install -r requirements.txt
  1. Download data
  • Download multi_nli + snli:
$ cd data
$ sh download_data.sh
  • Download sts datasets
$ cd SentEval/data/downstream
$ bash download_dataset.sh

2. Train w/ train_angle.py

The training interface is still messy, we are working on making it better. Currently you can modify train_angle.py to train your own models.

3. Custom Train

Open In Colab

from datasets import load_dataset
from angle_emb import AnglE, AngleDataTokenizer


# 1. load pretrained model
angle = AnglE.from_pretrained('SeanLee97/angle-bert-base-uncased-nli-en-v1', max_length=128, pooling_strategy='cls').cuda()

# 2. load dataset
# `text1`, `text2`, and `label` are three required columns.
ds = load_dataset('mteb/stsbenchmark-sts')
ds = ds.map(lambda obj: {"text1": str(obj["sentence1"]), "text2": str(obj['sentence2']), "label": obj['score']})
ds = ds.select_columns(["text1", "text2", "label"])

# 3. transform data
train_ds = ds['train'].shuffle().map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)
valid_ds = ds['validation'].map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)
test_ds = ds['test'].map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)

# 4. fit
angle.fit(
    train_ds=train_ds,
    valid_ds=valid_ds,
    output_dir='ckpts/sts-b',
    batch_size=32,
    epochs=5,
    learning_rate=2e-5,
    save_steps=100,
    eval_steps=1000,
    warmup_steps=0,
    gradient_accumulation_steps=1,
    loss_kwargs={
        'w1': 1.0,
        'w2': 1.0,
        'w3': 1.0,
        'cosine_tau': 20,
        'ibn_tau': 20,
        'angle_tau': 1.0
    },
    fp16=True,
    logging_steps=100
)

# 5. evaluate
corrcoef, accuracy = angle.evaluate(test_ds, device=angle.device)
print('corrcoef:', corrcoef)

Citation

You are welcome to use our code and pre-trained models. If you use our code and pre-trained models, please support us by citing our work as follows:

@article{li2023angle,
  title={AnglE-optimized Text Embeddings},
  author={Li, Xianming and Li, Jing},
  journal={arXiv preprint arXiv:2309.12871},
  year={2023}
}

ChangeLogs

📅 Description
2023 Dec 4 Release a universal English sentence embedding model: WhereIsAI/UAE-Large-V1
2023 Nov 2 Release an English pretrained model: SeanLee97/angle-llama-13b-nli
2023 Oct 28 Release two chinese pretrained models: SeanLee97/angle-roberta-wwm-base-zhnli-v1 and SeanLee97/angle-llama-7b-zhnli-v1; Add chinese README.md

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

angle_emb-0.1.4.tar.gz (19.3 kB view details)

Uploaded Source

Built Distribution

angle_emb-0.1.4-py3-none-any.whl (15.0 kB view details)

Uploaded Python 3

File details

Details for the file angle_emb-0.1.4.tar.gz.

File metadata

  • Download URL: angle_emb-0.1.4.tar.gz
  • Upload date:
  • Size: 19.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for angle_emb-0.1.4.tar.gz
Algorithm Hash digest
SHA256 16790bc2397d435e78f2aaa7690e7ab1831b9de3a2909d4cf069aba5262a6bc5
MD5 8b1b7d6dcf9e986af5db07bd9fb8d3b0
BLAKE2b-256 33a6f1f5fd073fc4ef80869df89e8d870cc9a9f76be43fbbf3b5b75c0a904a4a

See more details on using hashes here.

File details

Details for the file angle_emb-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: angle_emb-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 15.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for angle_emb-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 29ad4d5f3e780b1d08dafb3905b004b7f149ef6249d3ae3e026824e0cb004381
MD5 4fb300c2c3ba3160d9c3691752b5ce91
BLAKE2b-256 21fc858ab321b00ce6b7208728fdeec8d36a8e83bb1e6f045eecaffa583a58b6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page