Skip to main content

AnglE-optimize Text Embeddings

Project description

EN | 简体中文

AnglE📐: Angle-optimized Text Embeddings

It is Angle 📐, not Angel 👼.

🔥 A New SOTA for Semantic Textual Similarity!

🔥 Our universal sentence embedding WhereIsAI/UAE-Large-V1 achieves SOTA on the MTEB Leaderboard with an average score of 64.64!

https://arxiv.org/abs/2309.12871 PyPI version PyPI Downloads http://makeapullrequest.com

PWC PWC PWC PWC PWC PWC PWC

📊 Results on MTEB Leaderboard [click to expand]

📊 Results on STS benchmark [click to expand]

🤗 Pretrained Models

🤗 HF LoRA Weight Dependent Backbone LLM Language Prompt Pooling Strategy Examples
WhereIsAI/UAE-Large-V1 N N N EN Prompts.C for retrieval purposes, None for others cls Seach Demo
SeanLee97/angle-llama-13b-nli Y NousResearch/Llama-2-13b-hf Y EN Prompts.A last token /
SeanLee97/angle-llama-7b-nli-v2 Y NousResearch/Llama-2-7b-hf Y EN Prompts.A last token /
SeanLee97/angle-llama-7b-nli-20231027 Y NousResearch/Llama-2-7b-hf Y EN Prompts.A last token /
SeanLee97/angle-bert-base-uncased-nli-en-v1 N N N EN N cls_avg /
SeanLee97/angle-roberta-wwm-base-zhnli-v1 N N N ZH-CN N cls /
SeanLee97/angle-llama-7b-zhnli-v1 Y NousResearch/Llama-2-7b-hf Y ZH-CN Prompts.B last token /

💡 If the selected model is a LoRA weight, it must specify the corresponding dependent backbone.

For our STS Experiment, please refer to https://github.com/SeanLee97/AnglE/tree/main/examples/NLI

Results

English STS Results

Model STS12 STS13 STS14 STS15 STS16 STSBenchmark SICKRelatedness Avg.
SeanLee97/angle-llama-7b-nli-20231027 78.68 90.58 85.49 89.56 86.91 88.92 81.18 85.90
SeanLee97/angle-llama-7b-nli-v2 79.00 90.56 85.79 89.43 87.00 88.97 80.94 85.96
SeanLee97/angle-llama-13b-nli 79.33 90.65 86.89 90.45 87.32 89.69 81.32 86.52
SeanLee97/angle-bert-base-uncased-nli-en-v1 75.09 85.56 80.66 86.44 82.47 85.16 81.23 82.37

Chinese STS Results

Model ATEC BQ LCQMC PAWSX STS-B SOHU-dd SOHU-dc Avg.
^shibing624/text2vec-bge-large-chinese 38.41 61.34 71.72 35.15 76.44 71.81 63.15 59.72
^shibing624/text2vec-base-chinese-paraphrase 44.89 63.58 74.24 40.90 78.93 76.70 63.30 63.08
SeanLee97/angle-roberta-wwm-base-zhnli-v1 49.49 72.47 78.33 59.13 77.14 72.36 60.53 67.06
SeanLee97/angle-llama-7b-zhnli-v1 50.44 71.95 78.90 56.57 81.11 68.11 52.02 65.59

^ denotes baselines, their results are retrieved from: https://github.com/shibing624/text2vec

Usage

AnglE supports two APIs, one is the transformers API, the other is the AnglE API. If you want to use the AnglE API, please install AnglE first:

python -m pip install -U angle-emb

UAE

  1. For Retrieval Purposes

For retrieval purposes, please use the prompt Prompts.C.

from angle_emb import AnglE, Prompts

angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
angle.set_prompt(prompt=Prompts.C)
vec = angle.encode({'text': 'hello world'}, to_numpy=True)
print(vec)
vecs = angle.encode([{'text': 'hello world1'}, {'text': 'hello world2'}], to_numpy=True)
print(vecs)
  1. For non-Retrieval Purposes
from angle_emb import AnglE

angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
vec = angle.encode('hello world', to_numpy=True)
print(vec)
vecs = angle.encode(['hello world1', 'hello world2'], to_numpy=True)
print(vecs)
Difference between retrieval and non-retrieval sentence embeddings. [click to expand]

In UAE, we use different approaches for retrieval and non-retrieval tasks, each serving a different purpose.

Retrieval tasks aim to find relevant documents, and as a result, the related documents may not have strict semantic similarities to each other.

For instance, when querying "How about ChatGPT?", the related documents are those that contain information related to "ChatGPT," such as "ChatGPT is amazing..." or "ChatGPT is bad....".

Conversely, non-retrieval tasks, such as semantic textual similarity, require sentences that are semantically similar.

For example, a sentence semantically similar to "How about ChatGPT?" could be "What is your opinion about ChatGPT?".

To distinguish between these two types of tasks, we use different prompts.

For retrieval tasks, we use the prompt "Represent this sentence for searching relevant passages: {text}" (Prompts.C in angle_emb).

For non-retrieval tasks, we set the prompt to empty, i.e., just input your text without specifying a prompt.

So, if your scenario is retrieval-related, it is highly recommended to set the prompt with angle.set_prompt(prompt=Prompts.C). If not, leave the prompt empty or use angle.set_prompt(prompt=None).

Angle-LLaMA

  1. AnglE
from angle_emb import AnglE, Prompts

angle = AnglE.from_pretrained('NousResearch/Llama-2-7b-hf', pretrained_lora_path='SeanLee97/angle-llama-7b-nli-v2')

print('All predefined prompts:', Prompts.list_prompts())
angle.set_prompt(prompt=Prompts.A)
print('prompt:', angle.prompt)
vec = angle.encode({'text': 'hello world'}, to_numpy=True)
print(vec)
vecs = angle.encode([{'text': 'hello world1'}, {'text': 'hello world2'}], to_numpy=True)
print(vecs)
  1. transformers
from angle_emb import AnglE
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel, PeftConfig

peft_model_id = 'SeanLee97/angle-llama-7b-nli-v2'
config = PeftConfig.from_pretrained(peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path).bfloat16().cuda()
model = PeftModel.from_pretrained(model, peft_model_id).cuda()

def decorate_text(text: str):
    return Prompts.A.format(text=text)

inputs = 'hello world!'
tok = tokenizer([decorate_text(inputs)], return_tensors='pt')
for k, v in tok.items():
    tok[k] = v.cuda()
vec = model(output_hidden_states=True, **tok).hidden_states[-1][:, -1].float().detach().cpu().numpy()
print(vec)

Angle-BERT

  1. AnglE
from angle_emb import AnglE

angle = AnglE.from_pretrained('SeanLee97/angle-bert-base-uncased-nli-en-v1', pooling_strategy='cls_avg').cuda()
vec = angle.encode('hello world', to_numpy=True)
print(vec)
vecs = angle.encode(['hello world1', 'hello world2'], to_numpy=True)
print(vecs)
  1. transformers
import torch
from transformers import AutoModel, AutoTokenizer

model_id = 'SeanLee97/angle-bert-base-uncased-nli-en-v1'
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModel.from_pretrained(model_id).cuda()

inputs = 'hello world!'
tok = tokenizer([inputs], return_tensors='pt')
for k, v in tok.items():
    tok[k] = v.cuda()
hidden_state = model(**tok).last_hidden_state
vec = (hidden_state[:, 0] + torch.mean(hidden_state, dim=1)) / 2.0
print(vec)

Custom Train

  1. Use angle-trainer to train your AnglE model in cli mode. Usage: CUDA_VISIBLE_DEVICES=0 angle-trainer --help

  2. Example

Open In Colab

from datasets import load_dataset
from angle_emb import AnglE, AngleDataTokenizer


# 1. load pretrained model
angle = AnglE.from_pretrained('SeanLee97/angle-bert-base-uncased-nli-en-v1', max_length=128, pooling_strategy='cls').cuda()

# 2. load dataset
# `text1`, `text2`, and `label` are three required columns.
ds = load_dataset('mteb/stsbenchmark-sts')
ds = ds.map(lambda obj: {"text1": str(obj["sentence1"]), "text2": str(obj['sentence2']), "label": obj['score']})
ds = ds.select_columns(["text1", "text2", "label"])

# 3. transform data
train_ds = ds['train'].shuffle().map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)
valid_ds = ds['validation'].map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)
test_ds = ds['test'].map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)

# 4. fit
angle.fit(
    train_ds=train_ds,
    valid_ds=valid_ds,
    output_dir='ckpts/sts-b',
    batch_size=32,
    epochs=5,
    learning_rate=2e-5,
    save_steps=100,
    eval_steps=1000,
    warmup_steps=0,
    gradient_accumulation_steps=1,
    loss_kwargs={
        'w1': 1.0,
        'w2': 1.0,
        'w3': 1.0,
        'cosine_tau': 20,
        'ibn_tau': 20,
        'angle_tau': 1.0
    },
    fp16=True,
    logging_steps=100
)

# 5. evaluate
corrcoef, accuracy = angle.evaluate(test_ds, device=angle.device)
print('corrcoef:', corrcoef)

Citation

You are welcome to use our code and pre-trained models. If you use our code and pre-trained models, please support us by citing our work as follows:

@article{li2023angle,
  title={AnglE-optimized Text Embeddings},
  author={Li, Xianming and Li, Jing},
  journal={arXiv preprint arXiv:2309.12871},
  year={2023}
}

ChangeLogs

📅 Description
2024 Jan 11 refactor to support angle-trainer and BeLLM
2023 Dec 4 Release a universal English sentence embedding model: WhereIsAI/UAE-Large-V1
2023 Nov 2 Release an English pretrained model: SeanLee97/angle-llama-13b-nli
2023 Oct 28 Release two chinese pretrained models: SeanLee97/angle-roberta-wwm-base-zhnli-v1 and SeanLee97/angle-llama-7b-zhnli-v1; Add chinese README.md

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

angle_emb-0.2.3.tar.gz (34.8 kB view details)

Uploaded Source

Built Distribution

angle_emb-0.2.3-py3-none-any.whl (35.9 kB view details)

Uploaded Python 3

File details

Details for the file angle_emb-0.2.3.tar.gz.

File metadata

  • Download URL: angle_emb-0.2.3.tar.gz
  • Upload date:
  • Size: 34.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for angle_emb-0.2.3.tar.gz
Algorithm Hash digest
SHA256 982c8ff29d4f4b3bac5b6ff5f85a0cc196c6fc4c6c64fb546738873bdc90ae47
MD5 71840ddaa2867db37a5301f716ebc320
BLAKE2b-256 9b4176614825010d2443607a6514333316ed842f7ebc1510c56a4ee99e5c2831

See more details on using hashes here.

File details

Details for the file angle_emb-0.2.3-py3-none-any.whl.

File metadata

  • Download URL: angle_emb-0.2.3-py3-none-any.whl
  • Upload date:
  • Size: 35.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for angle_emb-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 375531cc55302535b4d679d2f010afb03ba950005d3cf7050d57bbc7693d70cb
MD5 96f976adc94a6daefe190c26654a2c45
BLAKE2b-256 4ee1a985da5102bf2f9fd5240448dab2203f65e94c988ebe621a7e37ba607eb6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page