Planar angle mathematics library for Python.

Project description

Planar angle mathematics library for Python.

This library contains many different functions for converting between units, comparing angles, and doing angle arithmetic.

Quickstart: pip3 install anglr.

Rationale

Consider the following trivial angle comparison code:

```import math
if target - math.pi / 4 <= heading <= target + math.pi / 4:
print("Facing the target")
else:
print("Not facing the target")
```

Angle code is everywhere. The above is totally, utterly wrong (consider what happens when target is 0), yet this could easily be overlooked while writing and during code review.

With anglr, there is a better way:

```import math
from anglr import Angle
if heading.angle_between(target) <= math.pi / 4:
print("Facing the target")
else:
print("Not facing the target")
```

Much better - this will now correctly take modular arithmetic into account when comparing angles.

Examples

Angle creation:

```from math import pi
from anglr import Angle
print(Angle())
print(Angle(87 * pi / 2))
print(Angle(Angle(pi / 2, "radians"))) # same as above
print(Angle(64.2, "degrees"))
print(Angle(4.5, "hours"))
print(Angle(203.8, "arcminutes"))
print(Angle(42352.7, "arcseconds"))
print(Angle((56, 32), "vector")) # angle in standard position - counterclockwise from positive X-axis
```

Angle conversion:

```from anglr import Angle
x = Angle(58.3)
print(complex(x))
print(float(x))
print(int(x))
print(x.dump())
x.degrees = 64.2
print(x.dump())
print(x.dump())
x.hours = 4.5
print(x.dump())
x.arcminutes = 203.8
print(x.dump())
x.arcseconds = 42352.7
print(x.dump())
x.vector = (56, 32)
print(x.dump())
```

Angle arithmetic:

```from math import pi
from anglr import Angle
print(Angle(pi / 6) + Angle(2 * pi / 3))
print(x * 2 + Angle(3 * pi / 4) / 4 + 5 * Angle(pi / 3))
print(-abs(+Angle(pi)))
print(round(Angle(-75.87)))
print(Angle(-4.3) <= Angle(pi / 4) > Angle(0.118) == Angle(0.118))
print(Angle(-870.3, "gradians").normalized(0)) # same as above
print(Angle(-870.3, "gradians").normalized(0, 2 * pi)) # same as above
print(Angle(1, "degrees").angle_between_clockwise(Angle(0, "degrees")))
print(Angle(1, "degrees").angle_between(Angle(0, "degrees")))
print(Angle(0, "degrees").angle_within(Angle(-45, "degrees"), Angle(45, "degrees")))
print(Angle(-1, "degrees").angle_within(Angle(-1, "degrees"), Angle(1, "degrees"), strictly_within=True))
```

To run all of the above as tests, simply execute the module using python3 -m anglr.

Installing

The easiest way to install this is using pip3 install anglr.

In the folder, run python3 setup.py install.

Requirements

This library requires Python 3.2 or higher to run.

Authors

```Uberi <azhang9@gmail.com> (Anthony Zhang)
```

Please report bugs and suggestions at the issue tracker!

The source code is available online at GitHub.