Anime Face Detector using mmdet and mmpose
Project description
Anime Face Detector
This is an anime face detector using mmdetection and mmpose.
(To avoid copyright issues, the above demo uses images generated by the TADNE model.)
The model detects near-frontal anime faces and predicts 28 landmark points.
The result of k-means clustering of landmarks detected in real images:
The mean images of real images belonging to each cluster:
Installation
pip install openmim
mim install mmcv-full
mim install mmdet
mim install mmpose
pip install anime-face-detector
This package is tested only on Ubuntu.
Usage
import cv2
from anime_face_detector import create_detector
detector = create_detector('yolov3')
image = cv2.imread('assets/input.jpg')
preds = detector(image)
print(preds[0])
{'bbox': array([2.2450244e+03, 1.5940223e+03, 2.4116030e+03, 1.7458063e+03,
9.9987185e-01], dtype=float32),
'keypoints': array([[2.2593938e+03, 1.6680436e+03, 9.3236601e-01],
[2.2825300e+03, 1.7051841e+03, 8.7208068e-01],
[2.3412151e+03, 1.7281011e+03, 1.0052248e+00],
[2.3941377e+03, 1.6825046e+03, 5.9705663e-01],
[2.4039426e+03, 1.6541921e+03, 8.7139702e-01],
[2.2625220e+03, 1.6330233e+03, 9.7608268e-01],
[2.2804077e+03, 1.6408495e+03, 1.0021354e+00],
[2.2969380e+03, 1.6494972e+03, 9.7812974e-01],
[2.3357908e+03, 1.6453258e+03, 9.8418534e-01],
[2.3475276e+03, 1.6355408e+03, 9.5060223e-01],
[2.3612463e+03, 1.6262626e+03, 9.0553057e-01],
[2.2682278e+03, 1.6631940e+03, 9.5465249e-01],
[2.2814783e+03, 1.6616484e+03, 9.0782022e-01],
[2.2987590e+03, 1.6692812e+03, 9.0256405e-01],
[2.2833625e+03, 1.6879142e+03, 8.0303693e-01],
[2.2934949e+03, 1.6909009e+03, 8.9718056e-01],
[2.3021218e+03, 1.6863715e+03, 9.3882143e-01],
[2.3471826e+03, 1.6636573e+03, 9.5727938e-01],
[2.3677822e+03, 1.6540554e+03, 9.4890594e-01],
[2.3889211e+03, 1.6611255e+03, 9.5125675e-01],
[2.3575544e+03, 1.6800433e+03, 8.5919142e-01],
[2.3688926e+03, 1.6800665e+03, 8.3275074e-01],
[2.3804905e+03, 1.6761322e+03, 8.4160626e-01],
[2.3165366e+03, 1.6947096e+03, 9.1840971e-01],
[2.3282458e+03, 1.7104808e+03, 8.8045174e-01],
[2.3380054e+03, 1.7114034e+03, 8.8357794e-01],
[2.3485500e+03, 1.7080273e+03, 8.6284375e-01],
[2.3378748e+03, 1.7118135e+03, 9.7880816e-01]], dtype=float32)}
Pretrained models
Here are the pretrained models. (They will be automatically downloaded when you use them.)
Demo (using Gradio)
Run locally
pip install gradio
git clone https://github.com/hysts/anime-face-detector
cd anime-face-detector
python demo_gradio.py
Citation
If you find this repo useful for your research, please consider citing it:
@misc{anime-face-detector,
author = {hysts},
title = {Anime Face Detector},
year = {2021},
howpublished = {\url{https://github.com/hysts/anime-face-detector}}
}
Links
General
Anime face detection
- https://github.com/zymk9/yolov5_anime
- https://github.com/qhgz2013/anime-face-detector
- https://github.com/cheese-roll/light-anime-face-detector
- https://github.com/nagadomi/lbpcascade_animeface
Anime face landmark detection
Others
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file anime-face-detector-0.0.9.tar.gz
.
File metadata
- Download URL: anime-face-detector-0.0.9.tar.gz
- Upload date:
- Size: 10.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.9.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | eba158d66e75bf3a32f72fd2a1dfca0b29e5d5124f6cf0e1487aeb0845333d9f |
|
MD5 | a2853a0b09e618ae12903bd041c0eebe |
|
BLAKE2b-256 | 113d819956db5c6223d66ddb26843260c820201bcf06f3841880b24f6d63839d |
File details
Details for the file anime_face_detector-0.0.9-py3-none-any.whl
.
File metadata
- Download URL: anime_face_detector-0.0.9-py3-none-any.whl
- Upload date:
- Size: 10.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.9.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a242d503d3a4ed67b9afa4d71ec686bae4372c33a2de1ddc3eca6a5ecc2e8da7 |
|
MD5 | 01963ff9555eea53cc778f3d466a693d |
|
BLAKE2b-256 | 4db8d12179c6d3c24047a6be554235fdfafa8e864a00279a332726f93a1e7d6f |