Skip to main content

annotation factory python sdk

Project description

Introduction

Build Status GitHub PyPI Python Version

Annotation-Factory Python SDK. This package works specifically with Microsoft Cognitive Services detection results. AnnotationWriter takes a JSON object received from Cognitive Services and produces annotation files in both VOC and YOLO formats for use in training machine learning models.

Getting Started

  1. Install annotationfactory package via pip:

    pip install annotationfactory
    

Sample to use

from annotationfactory.annotationwriter import AnnotationWriter
import annotationfactory.annotationconverter as converter

example = {
    'tagId': 0,
    'tagName': 'Apples',
    'region': {
        'left': 0.288039029,
        'top': 0.411838,
        'width': 0.291451037,
        'height': 0.4237842
    }
}

# Initialise AnnotationWriter.
writer = AnnotationWriter()

# Initialise annotation handlers.
writer.initVoc("test.jpg", 608, 608)
writer.initYolo()

# Add VOC object to writer.
writer.addVocObject(example)
writer.addVocObject(example)

# Add YOLO object to writer.
writer.addYoloObject(example)
writer.addYoloObject(example)

# Output VOC annotations to file.
writer.saveVoc("myannotation.xml")

# Output YOLO annotations to file.
writer.saveYolo("myannotation.txt")

# Converts VOC annotations back to CustomVision annotation format.
voc2cv = converter.convertVocFromPath("myannotation.xml")

# Converts YOLO annotations back to CustomVision annotation format.
# Requires a txt file with list of label names as an input.
yolo2cv = converter.convertYoloFromPath("myannotation.txt", "class.names")

Run locally

pip install -r requirements.txt 
python example/test.py

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

annotationfactory-0.0.1.dev304-py3-none-any.whl (8.1 kB view details)

Uploaded Python 3

File details

Details for the file annotationfactory-0.0.1.dev304-py3-none-any.whl.

File metadata

  • Download URL: annotationfactory-0.0.1.dev304-py3-none-any.whl
  • Upload date:
  • Size: 8.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.2

File hashes

Hashes for annotationfactory-0.0.1.dev304-py3-none-any.whl
Algorithm Hash digest
SHA256 9ee86eaf600bc3e4effb3bbacd6e3d994503548c2be2f6caf83246328a05a1e0
MD5 11a88d8887dcce77fb4005ef4a92724c
BLAKE2b-256 2ba5acb28475be576f40014fd4987b79fb6e3881d78b83ec9ad9fdbd9e7809a9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page