Skip to main content

annotation factory python sdk

Project description

Introduction

Build Status GitHub PyPI

Annotation-Factory Python SDK. This package works specifically with Microsoft Cognitive Services detection results. AnnotationWriter takes a JSON object received from Cognitive Services and produces annotation files in both VOC and YOLO formats for use in training machine learning models.

Getting Started

  1. Install annotationfactory package via pip:

    pip install annotationfactory
    

Sample to use

from annotationfactory.annotationwriter import AnnotationWriter
import annotationfactory.annotationconverter as converter

example = {
    'tagId': 0,
    'tagName': 'Apples',
    'region': {
        'left': 0.288039029,
        'top': 0.411838,
        'width': 0.291451037,
        'height': 0.4237842
    }
}

# Initialise AnnotationWriter.
writer = AnnotationWriter()

# Initialise annotation handlers.
writer.initVoc("test.jpg", 608, 608)
writer.initYolo()

# Add VOC object to writer.
writer.addVocObject(example)
writer.addVocObject(example)

# Add YOLO object to writer.
writer.addYoloObject(example)
writer.addYoloObject(example)

# Output VOC annotations to file.
writer.saveVoc("myannotation.xml")

# Output YOLO annotations to file.
writer.saveYolo("myannotation.txt")

# Converts VOC annotations back to CustomVision annotation format.
voc2cv = converter.convertVocFromPath("myannotation.xml")

# Converts YOLO annotations back to CustomVision annotation format.
# Requires a txt file with list of label names as an input.
yolo2cv = converter.convertYoloFromPath("myannotation.txt", "class.names")

Run locally

pip install -r requirements.txt 
python example/test.py

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
annotationfactory-0.0.1.dev176-py3-none-any.whl (8.1 kB) Copy SHA256 hash SHA256 Wheel py3

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page