Skip to main content

Anomaly cancellation

Project description

Anomalies

Implement the anomaly free solution of arXiv:1905.13729 [PRL]:

A set of integers $n_i$ ($i=1,2,\ldots,N$) satisfying the Diophantine equations $$ \sum_{i=1}^{N}n_i&=0,,\qquad \sum_{i=1}^{N}n_{i}^3&=0,, $$ can be parametrized as a function of two sets of integers $l$ and $k$, with dimensions $(N-3)/2$ and $(N-1)/2$ for $N$ odd, or $N/2-1$ and $N/2-1$ for $N$ even. The function is implemented below under the name: free(l,k)

Install

$ pip install anomalies

USAGE

>>> from anomalies import anomaly
>>> anomaly.free([-1,1],[4,-2])
array([  3,   3,   3, -12, -12,  15])
>>> anomaly.free.gcd
3
>>> anomaly.free.simplified
array([ 1,  1,  1, -4, -4,  5])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

anomalies-0.1.2.tar.gz (2.8 kB view details)

Uploaded Source

Built Distribution

anomalies-0.1.2-py3-none-any.whl (3.7 kB view details)

Uploaded Python 3

File details

Details for the file anomalies-0.1.2.tar.gz.

File metadata

  • Download URL: anomalies-0.1.2.tar.gz
  • Upload date:
  • Size: 2.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.9.0

File hashes

Hashes for anomalies-0.1.2.tar.gz
Algorithm Hash digest
SHA256 5704bacafd5457331bdc90d6793c1a2ef28e3df2e29770f5c36436ecf97cb2f7
MD5 84453c1da83563bfe599bc9a92fc9c53
BLAKE2b-256 d6b86f938c0e5d47350d2bfcb1237346912ada6f0b9c15a53da28667679631eb

See more details on using hashes here.

Provenance

File details

Details for the file anomalies-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: anomalies-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 3.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.9.0

File hashes

Hashes for anomalies-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 8574916144690635d4aae01eccec39c9440ccd267fbcb898e39e385294de57c0
MD5 92994e1101265cdcc248b803442b4b1a
BLAKE2b-256 d4304bbb6e4f51dfa0ad33bb651d82e53ea24ec4b6e30bce3124b123c2e850c9

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page