Skip to main content

Anomalous diffusion simulation

Project description

Stochastic Process Simulation

Random generator

  • symmetric stable distribution
  • totally skewed stable distribution
  • power-law distribution
  • discrete finite probability distribution

Levy process

  • stable Levy process
  • subordinator
  • Poisson process

Continuous-time random walk(CTRW)

  • finite and diverging characteristic waiting time
  • finite and diverging jump length variance

Alternating process

  • two-states process with Levy walk and Brownian motion

Fractional Brownian motion

Multiple internal states process

  • fractional compound Poisson process
  • Levy walk

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

anomalous-diffusion-0.1.0.tar.gz (6.0 kB view details)

Uploaded Source

Built Distribution

anomalous_diffusion-0.1.0-py3-none-any.whl (9.2 kB view details)

Uploaded Python 3

File details

Details for the file anomalous-diffusion-0.1.0.tar.gz.

File metadata

  • Download URL: anomalous-diffusion-0.1.0.tar.gz
  • Upload date:
  • Size: 6.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for anomalous-diffusion-0.1.0.tar.gz
Algorithm Hash digest
SHA256 53d8e0ee8c475e5c96330ddcf6d216c63e844e96de504e16f87f509ef788befb
MD5 f32084ffa67c391b8b3887d58d8ab4f6
BLAKE2b-256 c9ae995193938a9f2548888bf490cebc48728b41ed30b80b918850ba0f7a83a7

See more details on using hashes here.

File details

Details for the file anomalous_diffusion-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: anomalous_diffusion-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 9.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for anomalous_diffusion-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a6306557fc8150684b7775024b458302b2e2380b2686df9b4a8b14a763d361df
MD5 3f45defb349b880d295ea53c8ed1b60d
BLAKE2b-256 6b924d70b51b9f19c79926f61992fdf499ed1130455807980c4db7ca44da08f9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page