Anonymization library for python
Project description
AnonyPy
Anonymization library for python. AnonyPy provides following privacy preserving techniques for the anonymization.
- K Anonymity
- L Diversity
- T Closeness
The Anonymization method
- Anonymization method aims at making the individual record be indistinguishable among a group record by using techniques of generalization and suppression.
- Turning a dataset into a k-anonymous (and possibly l-diverse or t-close) dataset is a complex problem, and finding the optimal partition into k-anonymous groups is an NP-hard problem.
- AnonyPy uses "Mondrian" algorithm to partition the original data into smaller and smaller groups
- The algorithm assumes that we have converted all attributes into numerical or categorical values and that we are able to measure the “span” of a given attribute Xi.
Install
$ pip install anonypy
Usage
import anonypy
import pandas as pd
data = [
[6, "1", "test1", "x", 20],
[6, "1", "test1", "x", 30],
[8, "2", "test2", "x", 50],
[8, "2", "test3", "w", 45],
[8, "1", "test2", "y", 35],
[4, "2", "test3", "y", 20],
[4, "1", "test3", "y", 20],
[2, "1", "test3", "z", 22],
[2, "2", "test3", "y", 32],
]
columns = ["col1", "col2", "col3", "col4", "col5"]
categorical = set(("col2", "col3", "col4"))
def main():
df = pd.DataFrame(data=data, columns=columns)
for name in categorical:
df[name] = df[name].astype("category")
feature_columns = ["col1", "col2", "col3"]
sensitive_column = "col4"
p = anonypy.Preserver(df, feature_columns, sensitive_column)
rows = p.anonymize_k_anonymity(k=2)
dfn = pd.DataFrame(rows)
print(dfn)
Original data
col1 col2 col3 col4 col5
0 6 1 test1 x 20
1 6 1 test1 x 30
2 8 2 test2 x 50
3 8 2 test3 w 45
4 8 1 test2 y 35
5 4 2 test3 y 20
6 4 1 test3 y 20
7 2 1 test3 z 22
8 2 2 test3 y 32
The created anonymized data is below(Guarantee 2-anonymity).
col1 col2 col3 col4 count
0 2-4 2 test3 y 2
1 2-4 1 test3 y 1
2 2-4 1 test3 z 1
3 6-8 1 test1,test2 x 2
4 6-8 1 test1,test2 y 1
5 8 2 test3,test2 w 1
6 8 2 test3,test2 x 1
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file anonypy-0.2.1-py3-none-any.whl
.
File metadata
- Download URL: anonypy-0.2.1-py3-none-any.whl
- Upload date:
- Size: 6.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ad5a1c14e69dc6399dee8e94ca2b82efec3da5cd13c0e64048354b752296ac1e |
|
MD5 | ad08fd231f08a6b3c0df5724feceed2d |
|
BLAKE2b-256 | 270973426cb7390b78f4ab8a74fb54ba57b7cc4b377a5b16e9709e15a5bc0dc2 |