Skip to main content

Anonymization library for python

Project description

AnonyPy

Anonymization library for python. AnonyPy provides following privacy preserving techniques for the anonymization.

  • K Anonymity
  • L Diversity
  • T Closeness

The Anonymization method

  • Anonymization method aims at making the individual record be indistinguishable among a group record by using techniques of generalization and suppression.
  • Turning a dataset into a k-anonymous (and possibly l-diverse or t-close) dataset is a complex problem, and finding the optimal partition into k-anonymous groups is an NP-hard problem.
  • AnonyPy uses "Mondrian" algorithm to partition the original data into smaller and smaller groups
  • The algorithm assumes that we have converted all attributes into numerical or categorical values and that we are able to measure the “span” of a given attribute Xi.

Install

$ pip install anonypy

Usage

import anonypy
import pandas as pd

data = [
    [6, "1", "test1", "x", 20],
    [6, "1", "test1", "x", 30],
    [8, "2", "test2", "x", 50],
    [8, "2", "test3", "w", 45],
    [8, "1", "test2", "y", 35],
    [4, "2", "test3", "y", 20],
    [4, "1", "test3", "y", 20],
    [2, "1", "test3", "z", 22],
    [2, "2", "test3", "y", 32],
]

columns = ["col1", "col2", "col3", "col4", "col5"]
categorical = set(("col2", "col3", "col4"))

def main():
    df = pd.DataFrame(data=data, columns=columns)

    for name in categorical:
        df[name] = df[name].astype("category")

    feature_columns = ["col1", "col2", "col3"]
    sensitive_column = "col4"

    p = anonypy.Preserver(df, feature_columns, sensitive_column)
    rows = p.anonymize_k_anonymity(k=2)

    dfn = pd.DataFrame(rows)
    print(dfn)

Original data

   col1 col2   col3 col4  col5
0     6    1  test1    x    20
1     6    1  test1    x    30
2     8    2  test2    x    50
3     8    2  test3    w    45
4     8    1  test2    y    35
5     4    2  test3    y    20
6     4    1  test3    y    20
7     2    1  test3    z    22
8     2    2  test3    y    32

The created anonymized data is below(Guarantee 2-anonymity).

  col1 col2         col3 col4  count
0  2-4    2        test3    y      2
1  2-4    1        test3    y      1
2  2-4    1        test3    z      1
3  6-8    1  test1,test2    x      2
4  6-8    1  test1,test2    y      1
5    8    2  test3,test2    w      1
6    8    2  test3,test2    x      1

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

anonypy-0.2.1-py3-none-any.whl (6.8 kB view details)

Uploaded Python 3

File details

Details for the file anonypy-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: anonypy-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 6.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for anonypy-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ad5a1c14e69dc6399dee8e94ca2b82efec3da5cd13c0e64048354b752296ac1e
MD5 ad08fd231f08a6b3c0df5724feceed2d
BLAKE2b-256 270973426cb7390b78f4ab8a74fb54ba57b7cc4b377a5b16e9709e15a5bc0dc2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page