Skip to main content

Quick and easy display of tabular data and matrices with optional ANSI color and borders

Project description

PyPI version fury.io Anaconda version pyversions Build Status Maintenance GitHub license PyPI - Downloads

Pretty tables and matrices for Python

Synopsis

Create a table programatically from Python, or import a table from a Pandas dataframe which is also an easy way to read an Excel or CSV file. Display your table on the console or render it to a popular markup language such as HTML, Markdown, reStructured text, LaTeX or wikitable.

What's new

0.11.2:

  • export a table in HTML format
  • export a table in ReST format
  • export a table in wikitable format
  • improved format override for a single cell, using Cell

0.11.0:

  • Pandas integration. Convert a Pandas DataFrame to a table, or vice versa
  • export a table in CSV format
  • added unit tests for the various conversion methods

0.10.0:

  • colsep is now the number of padding spaces on each side of the cell data. colsep=1 means one space on the left and one on the right, previously this was achieved by colsep=2.
  • the padding now has bgcolor
  • the method rule() adds a horizontal dividing line across the table (actually this is from a few releases ago)
  • row() has arguments to override the fgcolor, bgcolor and style of all columns in the row, useful for highlighting a row.

0.9.10:

  • fix problems due to changes with colored 2.x

0.9.5:

  • methods to format table as MarkDown or LaTeX
  • work with Python 3.4

0.9.3:

  • create matrices as well as tables
  • option to suppress color output

Tables

Painless creation of nice-looking tables of data for Python.

colored table

Starting simple

 1 | from ansitable import ANSITable, Column
 2 |
 3 | table = ANSITable("col1", "column 2 has a big header", "column 3")
 4 | table.row("aaaaaaaaa", 2.2, 3)
 5 | table.row("bbbbbbbbbbbbb", 5.5, 6)
 6 | table.row("ccccccc", 8.8, 9)
 7 | table.print()

Line 3 constructs an ANSITable object and the arguments are a sequence of column names followed by ANSITable keyword arguments - there are none in this first example. Since there are three column names this this will be a 3-column table. Lines 4-6 add rows, 3 data values for each row.

Line 7 prints the table and yields a tabular display with column widths automatically chosen, and headings and column data all right-justified (default)

         col1  column 2 has a big header  column 3  
    aaaaaaaaa                        2.2         3  
bbbbbbbbbbbbb                        5.5         6  
      ccccccc                        8.8         9  

By default output is printed to the console (stdout) but we can also:

  • provide a file option to .print() to allow writing to a specified output stream, the default is stdout.
  • obtain a multi-line string version of the entire table as str(table).

The more general solution is to provide a sequence of Column objects which allows many column specific options to be given, as we shall see later. For now though, we could rewrite the example above as:

table = ANSITable(
        Column("col1"),
        Column("column 2 has a big header"),
        Column("column 3")
    )

or as

table = ANSITable()
table.addcolumn("col1")
table.addcolumn("column 2 has a big header")
table.addcolumn("column 3")

where the keyword arguments to .addcolumn() are the same as those for Column and are given below.


We can specify a Python format() style format string for any column - by default it is the general formatting option "{}". You may choose to left or right justify values via the format string, ansitable provides control over how those resulting strings are justified within the column.

table = ANSITable(
        Column("col1"),
        Column("column 2 has a big header", "{:.3g}"),  # CHANGE
        Column("column 3", "{:-10.4f}")
    )
table.row("aaaaaaaaa", 2.2, 3)
table.row("bbbbbbbbbbbbb", 5.5, 6)
table.row("ccccccc", 8.8, 9)
table.print()

which yields

         col1  column 2 has a big header    column 3  
    aaaaaaaaa                        2.2      3.0000  
bbbbbbbbbbbbb                        5.5      6.0000  
      ccccccc                        8.8      9.0000  
      

Alternatively we can specify the format argument as a function that converts the value to a string.


The data in column 1 is quite long, we might wish to set a maximum column width which we can do using the width argument

table = ANSITable(
        Column("col1", width=10),                      # CHANGE
        Column("column 2 has a big header", "{:.3g}"),
        Column("column 3", "{:-10.4f}")
    )
table.row("aaaaaaaaa", 2.2, 3)
table.row("bbbbbbbbbbbbb", 5.5, 6)
table.row("ccccccc", 8.8, 9)
table.print()

which yields

      col1  column 2 has a big header    column 3  
 aaaaaaaaa                        2.2      3.0000  
bbbbbbbbb…                        5.5      6.0000  
   ccccccc                        8.8      9.0000  

where we see that the data in column 1 has been truncated.

If you don't like the ellipsis you can turn it off, and get to see one more character, with the ANSITable option ellipsis=False. The Unicode ellipsis character u+2026 is used.

Borders

We can add a table border made up of regular ASCII characters

table = ANSITable(
        Column("col1"),
        Column("column 2 has a big header"),
        Column("column 3"),
        border="ascii"                          # CHANGE
    )
table.row("aaaaaaaaa", 2.2, 3)
table.row("bbbbbbbbbbbbb", 5.5, 6)
table.row("ccccccc", 8.8, 9)
table.print()

which yields

+--------------+---------------------------+----------+
|         col1 | column 2 has a big header | column 3 |
+--------------+---------------------------+----------+
|    aaaaaaaaa |                       2.2 |        3 |
|bbbbbbbbbbbbb |                       5.5 |        6 |
|      ccccccc |                       8.8 |        9 |
+--------------+---------------------------+----------+

Or we can construct a border using the ANSI box-drawing characters which are supported by most terminal emulators

table = ANSITable(
        Column("col1"),
        Column("column 2 has a big header"),
        Column("column 3"),
        border="thick"                           # CHANGE
    )
table.row("aaaaaaaaa", 2.2, 3)
table.row("bbbbbbbbbbbbb", 5.5, 6)
table.row("ccccccc", 8.8, 9)
table.print()

which yields

┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┓
┃         col1 ┃ column 2 has a big header ┃ column 3 ┃
┣━━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━╋━━━━━━━━━━┫
┃    aaaaaaaaa ┃                       2.2 ┃        3 ┃
┃bbbbbbbbbbbbb ┃                       5.5 ┃        6 ┃
┃      ccccccc ┃                       8.8 ┃        9 ┃
┗━━━━━━━━━━━━━━┻━━━━━━━━━━━━━━━━━━━━━━━━━━━┻━━━━━━━━━━┛

Note: this actually looks better on the console than it does in GitHub markdown.

Other border options include "thin", "rounded" (thin with round corners) and "double".

Header and column alignment

We can change the alignment of data and heading for any column with the alignment flags "<" (left), ">" (right) and "^" (centered).

table = ANSITable(
        Column("col1"),
        Column("column 2 has a big header", colalign="^"),  # CHANGE
        Column("column 3"),
        border="thick"
    )
table.row("aaaaaaaaa", 2.2, 3)
table.row("bbbbbbbbbbbbb", 5.5, 6)
table.row("ccccccc", 8.8, 9)
table.print()

which yields

┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┓
┃         col1 ┃ column 2 has a big header ┃ column 3 ┃
┣━━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━╋━━━━━━━━━━┫
┃    aaaaaaaaa ┃            2.2            ┃        3 ┃
┃bbbbbbbbbbbbb ┃            5.5            ┃        6 ┃
┃      ccccccc ┃            8.8            ┃        9 ┃
┗━━━━━━━━━━━━━━┻━━━━━━━━━━━━━━━━━━━━━━━━━━━┻━━━━━━━━━━┛

where the data for column 2 has been centered.


Heading and data alignment for any column can be set independently

table = ANSITable(
        Column("col1", headalign="<"),                      # CHANGE
        Column("column 2 has a big header", colalign="^"),
        Column("column 3", colalign="<"),                   # CHANGE
        border="thick"
    )
table.row("aaaaaaaaa", 2.2, 3)
table.row("bbbbbbbbbbbbb", -5.5, 6)
table.row("ccccccc", 8.8, -9)
table.print()

yields

┏━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┓
┃          col1 ┃ column 2 has a big header ┃ column 3 ┃
┣━━━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━╋━━━━━━━━━━┫
┃     aaaaaaaaa ┃                       2.2 ┃        3 ┃
┃ bbbbbbbbbbbbb ┃                      -5.5 ┃        6 ┃
┃       ccccccc ┃                       8.8 ┃       -9 ┃
┗━━━━━━━━━━━━━━━┻━━━━━━━━━━━━━━━━━━━━━━━━━━━┻━━━━━━━━━━┛

where we have left-justified the heading for column 1 and the data for column 3.

We can easily add a dividing line

table = ANSITable(
        Column("col1", headalign="<"),
        Column("column 2 has a big header", colalign="^"),
        Column("column 3", colalign="<"),
        border="thick"
    )
table.row("aaaaaaaaa", 2.2, 3)
table.row("bbbbbbbbbbbbb", -5.5, 6)
table.rule()                                                # CHANGE
table.row("ccccccc", 8.8, -9)
table.print()

yields

┏━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┓
┃          col1 ┃ column 2 has a big header ┃ column 3 ┃
┣━━━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━╋━━━━━━━━━━┫
┃     aaaaaaaaa ┃                       2.2 ┃        3 ┃
┃ bbbbbbbbbbbbb ┃                      -5.5 ┃        6 ┃
┣━━━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━╋━━━━━━━━━━┫
┃       ccccccc ┃                       8.8 ┃       -9 ┃
┗━━━━━━━━━━━━━━━┻━━━━━━━━━━━━━━━━━━━━━━━━━━━┻━━━━━━━━━━┛

Color

If you have the colored package installed then you can set the foreground and background color and style (bold, reverse, underlined, dim) of the header and column data, as well as the border color.

table = ANSITable(
    Column("col1", headalign="<", colcolor="red", headstyle="underlined"),      # CHANGE
    Column("column 2 has a big header", colalign="^", colstyle="bold"),      # CHANGE
    Column("column 3", colalign="<", colbgcolor="green"),                       # CHANGE
    border="thick", bordercolor="blue"                                          # CHANGE
)

table.row("aaaaaaaaa", 2.2, 3)
table.row("bbbbbbbbbbbbb", -5.5, 6)                        # CHANGE
table.row("ccccccc", 8.8, -9)
table.print()

which yields

colored table

It is possible to the change the color of a single row of the table, overriding the column defaults, by

    table.row("aaaaaaaaa", 2.2, 3)
    table.row("bbbbbbbbbbbbb", 5.5, 6)
    table.row("ccccccc", 8.8, -9)

which yields

colored table

It is also possible to the change the color of a single cell of the table, overriding the column and row defaults, by passing a Cell instance

table = ANSITable("col1", "column 2 has a big header", "column 3")
    table.row("aaaaaaaaa", 2.2, 3)
    table.row("bbbbbbbbbbbbb", Cell(-5.5, bgcolor="blue"), 6, bgcolor="yellow")  # CHANGE
    table.row("ccccccc", 8.8, 9)
    table.print()

which yields

colored table

The older method (deprecated) of doing this is by prefixing the value with a color enclosed in double angle brackets, for example <<red>>. This does not allow changing the background color or style of the cell.

table = ANSITable("col1", "column 2 has a big header", "column 3")
    table.row("aaaaaaaaa", 2.2, 3)
    table.row("<<red>>bbbbbbbbbbbbb", 5.5, 6)
    table.row("<<blue>>ccccccc", 8.8, 9)
    table.print()

All options

ANSITable

These keyword arguments control the styling of the entire table.

Keyword Default Purpose
colsep 2 Gap between columns (in spaces)
offset 0 Gap at start of each row, shifts the table to the left
border no border Border style: 'ascii', 'thin', 'thick', 'double'
bordercolor Border color, see possible values
ellipsis True Add an ellipsis if a wide column is truncated
header True Include the column header row
columns Specify the number of columns if header=False and no header name or Column arguments are given
color True Enable color
  • Color is only possible if the colored package is installed
  • If color is False then no color escape sequences will be emitted, useful override for tables included in Sphinx documentation.

Column

These keyword arguments control the styling of a single column.

Keyword Default Purpose
fmt "{}" format string for the column value, or a callable that maps the column value to a string
width maximum column width, excess will be truncated
colcolor Text color, see possible values
colbgcolor Text background color, see possible values
colstyle Text style: "bold", "underlined", "reverse", "dim", "blink"
colalign ">" Text alignment: ">" (left), "<" (right), "^" (centered)
headcolor Heading text color, see possible values
headbgcolor Heading text background color, see possible values
headstyle Heading text style: "bold", "underlined", "reverse", "dim", "blink"
headalign ">" Heading text alignment: ">" (left), "<" (right), "^" (centered)

Note that many terminal emulators do not support the "blink" style.

Row

These keyword arguments control the styling of a single row.

Keyword Default Purpose
fgcolor Text color, see possible values
bgcolor Text background color, see possible values
style Text style: "bold", "underlined", "reverse", "dim", "blink"

Row styling overrides column styling.

Cell

These keyword arguments control the styling of a single cell.

Keyword Default Purpose
fgcolor Text color, see possible values
bgcolor Text background color, see possible values
style Text style: "bold", "underlined", "reverse", "dim", "blink"

Cell styling overrides row and column styling.

Render to markup language

Now that you can visualize your data as a beautiful table on the console, you might want the table in a different format to include in a document or website. ANSItable supports rendering a table into one of a number of common markup languages.

We start by creating a simple table

table = ANSITable("col1", "column 2 has a big header", "column 3")
table.row("aaaaaaaaa", 2.2, 3)
table.row("bbbbbbbbbbbbb", -5.5, 6)
table.row("ccccccc", 8.8, -9)
table.print()

Support for alignment and color options depends on the capability of the markup language that is being exported to.

Markdown

The table can be rendered into Markdown format by

table.markdown()

which generates

|          col1 | column 2 has a big header | column 3 |
| ------------: | ------------------------: | -------: |
|     aaaaaaaaa |                       2.2 |        3 |
| bbbbbbbbbbbbb |                      -5.5 |        6 |
|       ccccccc |                       8.8 |       -9 |

Column alignment is supported, but MarkDown doesn't allow the header to have different alignment to the data.

HTML

The table can be rendered into Markdown format by

table.html()

which generates

<table style=''>
  <tr style=''>
    <th style='text-align:right;'>col1</th>
    <th style='text-align:right;'>column 2 has a big header</th>
    <th style='text-align:right;'>column 3</th>
  </tr>
  <tr style=''>
    <td style='text-align:right;'>aaaaaaaaa</td>
    <td style='text-align:right;'>2.2</td>
    <td style='text-align:right;'>3</td>
  </tr>
  <tr style=''>
    <td style='text-align:right;'>bbbbbbbbbbbbb</td>
    <td style='text-align:right;'>-5.5</td>
    <td style='text-align:right;'>6</td>
  </tr>
  <tr style=''>
    <td style='text-align:right;'>ccccccc</td>
    <td style='text-align:right;'>8.8</td>
    <td style='text-align:right;'>-9</td>
  </tr>
</table>

which renders as

col1 column 2 has a big header column 3
aaaaaaaaa 2.2 3
bbbbbbbbbbbbb -5.5 6
ccccccc 8.8 -9

CSS styling options can be applied to the table, rows and cells. This format supports ANSItable header and column foreground and background color options.

ReStructedText

The table can be rendered into reStructedText (ReST) "simple table" format by

table.rest()

which generates

=============  =========================  ========
         col1  column 2 has a big header  column 3
=============  =========================  ========
    aaaaaaaaa                        2.2         3
bbbbbbbbbbbbb                       -5.5         6
      ccccccc                        8.8        -9
=============  =========================  ========

Header and column alignment options are not supported in the ReST simple table format.

LaTex

The table can be rendered into LaTeX format by

table.latex()

which generates

\begin{tabular}{ |r|r|r| }\hline
\multicolumn{1}{|r|}{col1} & \multicolumn{1}{|r|}{column 2 has a big header} & \multicolumn{1}{|r|}{column 3}\\\hline\hline
aaaaaaaaa & 2.2 & 3 \\
bbbbbbbbbbbbb & -5.5 & 6 \\
ccccccc & 8.8 & -9 \\
\hline
\end{tabular}

Header and column alignment options are supported.

Wikitable

The table can be rendered into wikitable markup format, as used for tables in Wikipedia, by

table.wikitable()

which generates

{| class="wikitable" col1right col2right col3right
|-
!           col1  !!  column 2 has a big header  !!  column 3  
|-
|      aaaaaaaaa  ||                        2.2  ||         3  
|-
|  bbbbbbbbbbbbb  ||                       -5.5  ||         6  
|-
|        ccccccc  ||                        8.8  ||        -9  
|}

Column alignment is supported, but wikitable headers are always centred.

CSV

The table can be rendered into CSV format by

table.csv()

which generates

col1,column 2 has a big header,column 3
aaaaaaaaa,2.2,3
bbbbbbbbbbbbb,-5.5,6
ccccccc,8.8,-9

The delimiter character defaults to comma, but can be set.

CSV format data can be quickly visualized on the desktop using any spreadsheet program, or included in ReST documentation using the csv-table directive.

Pandas integration

Pandas is THE tool to use for tabular data so we support conversions in both directions.

To convert a Pandas DataFrame to an ANSItable is just

import pandas as pd

df = pd.DataFrame({"calories": [420, 380, 390], "duration": [50, 40, 45]})
table = ANSITable.Pandas(df, border="thin")
table.print()

┌──────────┬──────────┐
│ calories │ duration │
├──────────┼──────────┤
│      420 │       50 │
│      380 │       40 │
│      390 │       45 │
└──────────┴──────────┘

Pandas() is a static method that acts like a constructor. This is the simplest way to display CSV format data in an ANSItable by using Pandas read_csv() to load the data into a DataFrame.

To export an ANSItable as a Pandas DataFrame is simply

table = ANSITable("col1", "column 2 has a big header", "column 3")
table.row("aaaaaaaaa", 2.2, 3)
table.row("bbbbbbbbbbbbb", -5.5, 6)
table.row("ccccccc", 8.8, -9)

df = table.pandas()
print(df)

            col1 column_2_has_a_big_header column_3
0      aaaaaaaaa                       2.2        3
1  bbbbbbbbbbbbb                      -5.5        6
2        ccccccc                       8.8       -9

Note that the column names have been modified, spaces changed to underscores, which allows the columns to be accessed as attributes:

print(df.column_2_has_a_big_header.to_string())

0     2.2
1    -5.5
2     8.8

which shows the column as a Pandas Series object. This column name-changing behaviour can be disabled by passing underscores=False.

Matrices

Painless creation of nice-looking matrices for Python.

We can create a formatter for NumPy arrays (1D or 2D)

from ansitable import ANSIMatrix
formatter = ANSIMatrix(style='thick')

and then use it to format a NumPy array

m = np.random.rand(4,4) - 0.5
m[0,0] = 1.23456e-14
formatter.print(m)

yields

┏                                           ┓
┃ 0         -0.385     -0.106      0.296    ┃
┃ 0.0432     0.339      0.119     -0.468    ┃
┃ 0.405     -0.306      0.0165    -0.439    ┃
┃ 0.203      0.4       -0.499     -0.487    ┃
┗                                           ┛

we can also add suffixes

formatter.print(m, suffix_super='T', suffix_sub='3')

yields

┏                                           ┓T
┃ 0         -0.239      0.186     -0.414    ┃
┃ 0.49       0.215     -0.0148     0.0529   ┃
┃ 0.0473     0.0311     0.45       0.394    ┃
┃-0.192      0.193     -0.455      0.0302   ┃
┗                                           ┛3

By default output is printed to the console (stdout) but we can also:

  • provide a file option to .print() to allow writing to a specified output stream, the default is stdout.
  • obtain a multi-line string version of the entire table using the .str() method instead of .print().

The formatter takes additional arguments to control the numeric format and to control the suppression of very small values.

ANSIMatrix

These keyword arguments control the overall styling and operation of the formatter.

Keyword Default Purpose
style "thin" "thin", "round", "thick", "double"
fmt "{:< 10.3g}" format for each element
squish True set small elements to zero
squishtol 100 elements less than squishtol * eps are set to zero

Formatter

A formatter takes additional arguments to the styling for a particular call.

Keyword Default Purpose
suffix_super "" superscript suffix text
suffix_sub "" subscript suffix text

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ansitable-0.11.3.tar.gz (27.0 kB view details)

Uploaded Source

Built Distribution

ansitable-0.11.3-py3-none-any.whl (19.1 kB view details)

Uploaded Python 3

File details

Details for the file ansitable-0.11.3.tar.gz.

File metadata

  • Download URL: ansitable-0.11.3.tar.gz
  • Upload date:
  • Size: 27.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.12

File hashes

Hashes for ansitable-0.11.3.tar.gz
Algorithm Hash digest
SHA256 9dabdac9ece44921e0c0ecac0b77db81341a851663215db8273200425f97e499
MD5 b38fc1c0631419f2ffb51d3db83f1522
BLAKE2b-256 380df1d2c3507a6e0ec10db395020f1ca902ec863328bf4a28567c839c1b245e

See more details on using hashes here.

File details

Details for the file ansitable-0.11.3-py3-none-any.whl.

File metadata

  • Download URL: ansitable-0.11.3-py3-none-any.whl
  • Upload date:
  • Size: 19.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.12

File hashes

Hashes for ansitable-0.11.3-py3-none-any.whl
Algorithm Hash digest
SHA256 681af76aea649305d2f718e6ad9eb33b49c918aaa01323ed9b68183ef2c31d06
MD5 c13be01bbafae9a90e7ad769b697a1bf
BLAKE2b-256 bde05ea90987c75c1bc9d75f2c470f42b6a5c87e43b1903180014c48e9f5b127

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page