Skip to main content

Data Processing Framework - Python Core

Project description

DPF - Ansys Data Processing Framework

PyAnsys Python pypi freq-PyDPF-Core GH-CI docs MIT pypidl cov codacy

Ansys Data Processing Framework (DPF) provides numerical simulation users and engineers with a toolbox for accessing and transforming simulation data. With DPF, you can perform complex preprocessing or postprocessing of large amounts of simulation data within a simulation workflow.

DPF is an independent, physics-agnostic tool that you can plug into many apps for both data input and data output, including visualization and result plots. It can access data from solver result files and other neutral formats, such as CSV, HDF5, and VTK files.

The latest version of DPF supports Ansys solver results files for:

  • Mechanical APDL (.rst, .mode, .rfrq, .rdsp)
  • LS-DYNA (.d3plot, .binout)
  • Fluent (.cas/dat.h5, .flprj)
  • CFX (.cad/dat.cff, .flprj)

For more information on file support, see the main page in the PyDPF-Core documentation.

Using the many DPF operators that are available, you can manipulate and transform this data. You can also chain operators together to create simple or complex data-processing workflows that you can reuse for repeated or future evaluations.

The data in DPF is defined based on physics-agnostic mathematical quantities described in self-sufficient entities called fields. This allows DPF to be a modular and easy-to-use tool with a large range of capabilities.

DPF flow

The ansys.dpf.core package provides a Python interface to DPF, enabling rapid postprocessing of a variety of Ansys file formats and physics solutions without ever leaving the Python environment.

Documentation and issues

Documentation for the latest stable release of PyDPF-Core is hosted at PyDPF-Core documentation.

In the upper right corner of the documentation's title bar, there is an option for switching from viewing the documentation for the latest stable release to viewing the documentation for the development version or previously released versions.

You can also view or download the PyDPF-Core cheat sheet. This one-page reference provides syntax rules and commands for using PyDPF-Core.

On the PyDPF-Core Issues page, you can create issues to report bugs and request new features. On the PyDPF-Core Discussions page or the Discussions page on the Ansys Developer portal, you can post questions, share ideas, and get community feedback.

To reach the project support team, email pyansys.core@ansys.com.

Installation

PyDPF-Core requires DPF to be available. You can either have a compatible Ansys version installed or install the standalone ansys-dpf-server server package. For more information, see Getting Started with DPF Server in the PyDPF-Core documentation.

For the compatibility between PyDPF-Core and Ansys, see Compatibility in the PyDPF-Core documentation.

To use PyDPF-Core with the ansys-dpf-server server package or with Ansys 2022 R2 or later, install the latest version with this command:

   pip install ansys-dpf-core

PyDPF-Core plotting capabilities require PyVista <https://pyvista.org/>_ to be installed. To install PyDPF-Core with its optional plotting functionalities, use this command:

   pip install ansys-dpf-core[plotting]

For more information on PyDPF-Core plotting capabilities, see Plot in the PyDPF-Core documentation.

To use PyDPF-Core with Ansys 2022 R1, install the latest compatible version with this command:

   pip install ansys-dpf-core<0.10.0

To use PyDPF-Core with Ansys 2021 R2, install the latest compatible version with this command:

   pip install ansys-grpc-dpf<0.4.0; pip install ansys-dpf-core<0.10.0

To use PyDPF-Core with Ansys 2021 R1, install the latest compatible version with this command:

   pip install ansys-grpc-dpf<0.3.0; pip install ansys-dpf-core<0.3.0

Brief demo

Provided you have DPF available, a DPF server automatically starts once you start using PyDPF-Core.

To open a result file and explore what's inside, use this code:

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> model = dpf.Model(examples.find_simple_bar())
>>> print(model)

    DPF Model
    ------------------------------
    Static analysis
    Unit system: Metric (m, kg, N, s, V, A)
    Physics Type: Mechanical
    Available results:
         -  displacement: Nodal Displacement
         -  element_nodal_forces: ElementalNodal Element nodal Forces
         -  elemental_volume: Elemental Volume
         -  stiffness_matrix_energy: Elemental Energy-stiffness matrix
         -  artificial_hourglass_energy: Elemental Hourglass Energy
         -  thermal_dissipation_energy: Elemental thermal dissipation energy
         -  kinetic_energy: Elemental Kinetic Energy
         -  co_energy: Elemental co-energy
         -  incremental_energy: Elemental incremental energy
         -  structural_temperature: ElementalNodal Temperature
    ------------------------------
    DPF  Meshed Region: 
      3751 nodes 
      3000 elements 
      Unit: m 
      With solid (3D) elements
    ------------------------------
    DPF  Time/Freq Support: 
      Number of sets: 1 
    Cumulative     Time (s)       LoadStep       Substep         
    1              1.000000       1              1               

Read a result with this command:

>>> result = model.results.displacement.eval()

Then, start connecting operators with this code:

>>> from ansys.dpf.core import operators as ops
>>> norm = ops.math.norm(model.results.displacement())

Starting the service

The ansys.dpf.core library automatically starts a local instance of the DPF service in the background and connects to it. If you need to connect to an existing remote or local DPF instance, use the connect_to_server method:

>>> from ansys.dpf import core as dpf
>>> dpf.connect_to_server(ip='10.0.0.22', port=50054)

Once connected, this connection remains for the duration of the module. It closes when you exit Python or connect to a different server.

License and acknowledgments

PyDPF-Core is licensed under the MIT license. For more information, see the LICENSE file.

PyDPF-Core makes no commercial claim over Ansys whatsoever. This library extends the functionality of Ansys DPF by adding a Python interface to DPF without changing the core behavior or license of the original software.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ansys_dpf_core-0.13.1-py3-none-win_amd64.whl (7.1 MB view details)

Uploaded Python 3 Windows x86-64

ansys_dpf_core-0.13.1-py3-none-manylinux_2_17_x86_64.whl (12.7 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ x86-64

ansys_dpf_core-0.13.1-py3-none-any.whl (2.3 MB view details)

Uploaded Python 3

File details

Details for the file ansys_dpf_core-0.13.1-py3-none-win_amd64.whl.

File metadata

File hashes

Hashes for ansys_dpf_core-0.13.1-py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 4f8be47329d8dec168bb39a67b53482c00e39c9b3927f7b58090ff155b7df45b
MD5 e05ff046de6220c28c63f354bcb1fa6e
BLAKE2b-256 f375306da67dd2795b6c8292892b301d20346ebfd72e2668b5da44ab6acf8f27

See more details on using hashes here.

File details

Details for the file ansys_dpf_core-0.13.1-py3-none-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ansys_dpf_core-0.13.1-py3-none-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 26fd81655d8fc5e61d38a2b6098e4c84643bb039e17ab5f8f10ce0eea46c3eee
MD5 34e4db5173853d30eb4a82ae10fedad6
BLAKE2b-256 98c68040d747852c5a45eb006506db89c3d72bb3b45e28839f1eb8b700f25932

See more details on using hashes here.

File details

Details for the file ansys_dpf_core-0.13.1-py3-none-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for ansys_dpf_core-0.13.1-py3-none-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 edabdcc892f9b6c1463e9acfb34142aefeec397e73b287abfc0bae9c832eb130
MD5 d5accd13549b588b199e2435fd69bbe7
BLAKE2b-256 34b4d146a4b1eb1f1baf79debb22e4389257690582aed07d3b9184d3412b1929

See more details on using hashes here.

File details

Details for the file ansys_dpf_core-0.13.1-py3-none-any.whl.

File metadata

File hashes

Hashes for ansys_dpf_core-0.13.1-py3-none-any.whl
Algorithm Hash digest
SHA256 911f92888f4c98be9500a74a22e13a8f7142bf6c149cfd0fa7dacf3b23c03cb5
MD5 4299ae815ca4e2c2f61699af054fa75c
BLAKE2b-256 e253271ccf4b5e4de53f1ccfc0c51e720dbb9d374012f5cfc389409d5e1a86da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page