Skip to main content

A python wrapper for ansys Fluent visualization

Project description

PyAnsys PyPI GH-CI MIT Black pre-commit.ci status

Overview

PyFluent-Visualization provides postprocessing and visualization capabilities for PyFluent using PyVista and Matplotlib.

Documentation and issues

For comprehensive information on PyFluent-Visualization, see the latest release documentation.

In the upper right corner of the documentation’s title bar, there is an option for switching from viewing the documentation for the latest stable release to viewing the documentation for the development version or previously released versions.

On the PyFluent Visualization Issues page, you can create issues to submit questions, reports burgs, and request new features. To reach the project support team, email pyansys.core@ansys.com.

Installation

The ansys-fluent-visualization package supports Python 3.10 through Python 3.12 on Windows and Linux.

If you are using Python 3.10, download and install the wheel file for the vtk package from here for Windows or from here for Linux.

Install the latest release from PyPI with:

pip install ansys-fluent-visualization

Alternatively, install the latest release from GitHub with:

pip install git+https://github.com/ansys/pyfluent-visualization.git

If you plan on doing local development of PyFluent-Visualization with Git, install with:

git clone https://github.com/ansys/pyfluent-visualization.git
cd pyfluent-visualization
pip install pip -U
pip install -e .

Dependencies

You must have a licensed copy of Ansys Fluent installed locally. PyFluent-Visualization supports Ansys Fluent 2022 R2 and later.

Getting started

Basic usage

The following code assumes that a PyFluent session has already been created and a Fluent case with input parameters has been set up. For a complete example, see Analyzing your results in the PyFluent-Visualization documentation.

from ansys.fluent.visualization.pyvista import Graphics
graphics = Graphics(session=session)
temperature_contour = graphics.Contours["contour-temperature"]
temperature_contour.field = "temperature"
temperature_contour.surfaces_list = ["in1", "in2", "out1"]
temperature_contour.display("window-1")

Usage in a JupyterLab environment

PyFluent-Visualization uses PyVista, which has the ability to display fully featured plots within a JupyterLab environment using ipyvtklink. Find out about using ipyvtklink with PyVista here <https://docs.pyvista.org/user-guide/jupyter/ipyvtk_plotting.html>

License and acknowledgments

PyFluent-Visualization is licensed under the MIT license.

PyFluent-Visualization makes no commercial claim over Ansys whatsoever. This tool extends the functionality of Ansys Fluent by adding a Python interface to Fluent without changing the core behavior or license of the original software. The use of the interactive Fluent control of PyFluent-Visualization requires a legally licensed local copy of Fluent.

For more information on Fluent, visit the Fluent page on the Ansys website.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ansys_fluent_visualization-0.14.0.tar.gz (21.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file ansys_fluent_visualization-0.14.0.tar.gz.

File metadata

File hashes

Hashes for ansys_fluent_visualization-0.14.0.tar.gz
Algorithm Hash digest
SHA256 887cf85b2cc16e1eae29c77075c94b541588f12efcc935c09b136886d680da79
MD5 2a40e066a3258f3d8858cabf4d5799c0
BLAKE2b-256 10ad6217215ee5ce47836bddc9284588da5edc78b9f450b36c54b8820d5de415

See more details on using hashes here.

File details

Details for the file ansys_fluent_visualization-0.14.0-py3-none-any.whl.

File metadata

File hashes

Hashes for ansys_fluent_visualization-0.14.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2ffcb858a4f9e3c58d5726669097a54e7c8a8013a9d37e4e800d0a586ada5a5e
MD5 e2fcde183eedf871817978964c7cbdad
BLAKE2b-256 e6fff89f420d1ab454a8c7b173ede13e3189ac2592753cbcf5de2569e886b0c0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page