Skip to main content

A python wrapper for ansys Fluent visualization

Project description

PyAnsys PyPI GH-CI MIT Black pre-commit.ci status

Overview

PyFluent-Visualization provides postprocessing and visualization capabilities for PyFluent using PyVista and Matplotlib.

Documentation and issues

For comprehensive information on PyFluent-Visualization, see the latest release documentation.

In the upper right corner of the documentation’s title bar, there is an option for switching from viewing the documentation for the latest stable release to viewing the documentation for the development version or previously released versions.

On the PyFluent Visualization Issues page, you can create issues to submit questions, reports burgs, and request new features. To reach the project support team, email pyansys.core@ansys.com.

Installation

The ansys-fluent-visualization package supports Python 3.10 through Python 3.12 on Windows and Linux.

If you are using Python 3.10, download and install the wheel file for the vtk package from here for Windows or from here for Linux.

Install the latest release from PyPI with:

pip install ansys-fluent-visualization

Alternatively, install the latest release from GitHub with:

pip install git+https://github.com/ansys/pyfluent-visualization.git

If you plan on doing local development of PyFluent-Visualization with Git, install with:

git clone https://github.com/ansys/pyfluent-visualization.git
cd pyfluent-visualization
pip install pip -U
pip install -e .

Dependencies

You must have a licensed copy of Ansys Fluent installed locally. PyFluent-Visualization supports Ansys Fluent 2022 R2 and later.

Getting started

Basic usage

The following code assumes that a PyFluent session has already been created and a Fluent case with input parameters has been set up. For a complete example, see Analyzing your results in the PyFluent-Visualization documentation.

from ansys.fluent.visualization.pyvista import Graphics
graphics = Graphics(session=session)
temperature_contour = graphics.Contours["contour-temperature"]
temperature_contour.field = "temperature"
temperature_contour.surfaces_list = ["in1", "in2", "out1"]
temperature_contour.display("window-1")

Usage in a JupyterLab environment

PyFluent-Visualization uses PyVista, which has the ability to display fully featured plots within a JupyterLab environment using ipyvtklink. Find out about using ipyvtklink with PyVista here <https://docs.pyvista.org/user-guide/jupyter/ipyvtk_plotting.html>

License and acknowledgments

PyFluent-Visualization is licensed under the MIT license.

PyFluent-Visualization makes no commercial claim over Ansys whatsoever. This tool extends the functionality of Ansys Fluent by adding a Python interface to Fluent without changing the core behavior or license of the original software. The use of the interactive Fluent control of PyFluent-Visualization requires a legally licensed local copy of Fluent.

For more information on Fluent, visit the Fluent page on the Ansys website.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ansys_fluent_visualization-0.15.dev0.tar.gz (21.3 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file ansys_fluent_visualization-0.15.dev0.tar.gz.

File metadata

File hashes

Hashes for ansys_fluent_visualization-0.15.dev0.tar.gz
Algorithm Hash digest
SHA256 d12d55ded9198eaaa987969cfe35c5014f831aa50e7c2e0e18bb2b4659e787a2
MD5 e4b3d360330a252489733b4a82a8ca9b
BLAKE2b-256 e729257b078c16a1017aa690fece1343b154e67ff1cc605b93fa7fbf65aa9b86

See more details on using hashes here.

File details

Details for the file ansys_fluent_visualization-0.15.dev0-py3-none-any.whl.

File metadata

File hashes

Hashes for ansys_fluent_visualization-0.15.dev0-py3-none-any.whl
Algorithm Hash digest
SHA256 3bb4c5ef13f7ceda90a4bf99525a2b523e0f189aa661397f7248df5f668cebf6
MD5 af9b34b0205f41b39db69464e781317e
BLAKE2b-256 3be6ab49f92d7916afe3edbfb19ee813e0dc25ef00c897d60b87c078bd9a1f63

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page