JupyterLab tool for data annotations for machine learning routines
Project description
AntAnnotator
JupyterLab tool for data annotations for machine learning routines.
Just drop your python data into widged and label it.
Features
Data persistence Data is automatically persisted on disk in .json format.
UI Annotation UI witch allow to do annotation
Usage example
from antannotator.annotation_controller import AnnotationController
from antannotator.persistence import AutoEventStorage, AutoAnnotationTaskStorage, AnnotationSample
# Select directory where annnotation task data will be stored
event_storage = AutoEventStorage.get_event_storage("/tmp/annotator/events")
task_storage = AutoAnnotationTaskStorage.get_task_storage("/tmp/annotator/tasks")
controller = AnnotationController(task_storage=task_storage, event_storage=event_storage)
#
options = {"literature": "Classical literature",
"songs": "20th Century Songs",
"other":"Other"}
# load samples to annotate
samples = [ AnnotationSample(sample_id=f"id_1",
task_data=f"We passed upon the stair\nWe spoke of was and when\nAlthough I wasn't there\nHe said I was his friend",
available_options=options,
hidden_info=None,
visible_info=None),
AnnotationSample(sample_id=f"id_2",
task_data=f"It was many and many a year ago,\nIn a kingdom by the sea",
available_options=options,
hidden_info=None,
visible_info=None),
AnnotationSample(sample_id=f"id_3",
task_data=f"On a dark desert highway, cool wind in my hair\nWarm smell of colitas, rising up through the air",
available_options=options,
hidden_info=None,
visible_info=None)]
controller.append_samples(samples)
# start annotations process
controller.do_annotaions()
Installation
pip install antannotator
Roadmap
-
Multichoice text classification
Multiclass, multichoise text classification -
One choice text classification
One choice classification. (Task adavance immediately user celect a option) -
Free input
Free user input. (For example for summarization task)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file antannotator-0.0.3.tar.gz
.
File metadata
- Download URL: antannotator-0.0.3.tar.gz
- Upload date:
- Size: 7.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 740b96fbef10005df2db91187dc87db271ec4b739d1ba14ddd1dd771c4483136 |
|
MD5 | 34b042f7374b6ea06d1fe1d62fc51e65 |
|
BLAKE2b-256 | 9e1ef87aef526eebe51aee5247dd16ba3d4966507c3852e7546abedb45d58e4c |
File details
Details for the file antannotator-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: antannotator-0.0.3-py3-none-any.whl
- Upload date:
- Size: 7.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4d8ff90c171a535e8bed1af1f76aee8e34db17e18b0ad23e0b6a602ae9929f73 |
|
MD5 | a671a034e400d6dbe6b8e4c88d548432 |
|
BLAKE2b-256 | 63a158309bf7601d8a149ff3af64763db14a5d88e1f3090c78a57f7cbc244df4 |