No project description provided
Project description
AntiBERTy
Official repository for AntiBERTy, an antibody-specific transformer language model pre-trained on 558M natural antibody sequences, as described in Deciphering antibody affinity maturation with language models and weakly supervised learning.
Setup
To use AntiBERTy, install via pip:
pip install antiberty
Alternatively, you can clone this repository and install the package locally:
$ git clone git@github.com:jeffreyruffolo/AntiBERTy.git
$ pip install AntiBERTy
Usage
Embeddings
To use AntiBERTy to generate sequence embeddings, use the embed
function. The output is a list of embedding tensors, where each tensor is the embedding for the corresponding sequence. Each embedding has dimension [(Length + 2) x 512]
.
from antiberty import AntiBERTyRunner
antiberty = AntiBERTyRunner()
sequences = [
"EVQLVQSGPEVKKPGTSVKVSCKASGFTFMSSAVQWVRQARGQRLEWIGWIVIGSGNTNYAQKFQERVTITRDMSTSTAYMELSSLRSEDTAVYYCAAPYCSSISCNDGFDIWGQGTMVTVS",
"DVVMTQTPFSLPVSLGDQASISCRSSQSLVHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQSTHVPYTFGGGTKLEIK",
]
embeddings = antiberty.embed(sequences)
To access the attention matrices, pass the return_attention
flag to the embed
function. The output is a list of attention matrices, where each matrix is the attention matrix for the corresponding sequence. Each attention matrix has dimension [Layer x Heads x (Length + 2) x (Length + 2)]
.
from antiberty import AntiBERTyRunner
antiberty = AntiBERTyRunner()
sequences = [
"EVQLVQSGPEVKKPGTSVKVSCKASGFTFMSSAVQWVRQARGQRLEWIGWIVIGSGNTNYAQKFQERVTITRDMSTSTAYMELSSLRSEDTAVYYCAAPYCSSISCNDGFDIWGQGTMVTVS",
"DVVMTQTPFSLPVSLGDQASISCRSSQSLVHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQSTHVPYTFGGGTKLEIK",
]
embeddings, attentions = antiberty.embed(sequences, return_attention=True)
The embed
function can also be used with masked sequences. Masked residues should be indicated with underscores.
Classification
To use AntiBERTy to predict the species and chain type of sequences, use the classify
function. The output is two lists of classifications for each sequences.
from antiberty import AntiBERTyRunner
antiberty = AntiBERTyRunner()
sequences = [
"EVQLVQSGPEVKKPGTSVKVSCKASGFTFMSSAVQWVRQARGQRLEWIGWIVIGSGNTNYAQKFQERVTITRDMSTSTAYMELSSLRSEDTAVYYCAAPYCSSISCNDGFDIWGQGTMVTVS",
"DVVMTQTPFSLPVSLGDQASISCRSSQSLVHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQSTHVPYTFGGGTKLEIK",
]
species_preds, chain_preds = antiberty.classify(sequences)
The classify
function can also be used with masked sequences. Masked residues should be indicated with underscores.
Mask prediction
To use AntiBERTy to predict the identity of masked residues, use the fill_masks
function. Masked residues should be indicated with underscores. The output is a list of filled sequences, corresponding to the input masked sequences.
from antiberty import AntiBERTyRunner
antiberty = AntiBERTyRunner()
sequences = [
"____VQSGPEVKKPGTSVKVSCKASGFTFMSSAVQWVRQARGQRLEWIGWIVIGSGN_NYAQKFQERVTITRDM__STAYMELSSLRSEDTAVYYCAAPYCSSISCNDGFD____GTMVTVS",
"DVVMTQTPFSLPV__GDQASISCRSSQSLVHSNGNTY_HWYLQKPGQSPKLLIYKVSNRFSGVPDRFSG_GSGTDFTLKISRVEAEDLGVYFCSQSTHVPYTFGG__KLEIK",
]
filled_sequences = antiberty.fill_masks(sequences)
Pseudo log-likelihood
To use AntiBERTy to calculate the pseudo log-likelihood of a sequence, use the pseudo_log_likelihood
function. The pseudo log-likelihood of a sequence is calculated as the average of per-residue masked log-likelihoods. The output is a list of pseudo log-likelihoods, corresponding to the input sequences.
from antiberty import AntiBERTyRunner
antiberty = AntiBERTyRunner()
sequences = [
"EVQLVQSGPEVKKPGTSVKVSCKASGFTFMSSAVQWVRQARGQRLEWIGWIVIGSGNTNYAQKFQERVTITRDMSTSTAYMELSSLRSEDTAVYYCAAPYCSSISCNDGFDIWGQGTMVTVS",
"DVVMTQSSTPFSLPVSLGDQASISCRSSQSLVHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQSTHVPYTFGGGTKLEIK",
]
pll = antiberty.pseudo_log_likelihood(sequences, batch_size=16)
Citing this work
@article{ruffolo2021deciphering,
title = {Deciphering antibody affinity maturation with language models and weakly supervised learning},
author = {Ruffolo, Jeffrey A and Gray, Jeffrey J and Sulam, Jeremias},
journal = {arXiv preprint arXiv:2112.07782},
year= {2021}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file antiberty-0.1.3.tar.gz
.
File metadata
- Download URL: antiberty-0.1.3.tar.gz
- Upload date:
- Size: 96.6 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 899a401e8b0ef9586d27713b4867aa26149ec0b63387d0be55164f458b6c3bad |
|
MD5 | d3f2c92a3d79f5395f6faab5569c3f02 |
|
BLAKE2b-256 | a13b2cf48ec21956252fdc5c5dd1b7f8bb8b12f5208bd3eaaad412ced3ed0ff5 |
File details
Details for the file antiberty-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: antiberty-0.1.3-py3-none-any.whl
- Upload date:
- Size: 96.6 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 30d910992b190013871bac49cdc032e01a19339f7d2b958ab99b0eb44638352a |
|
MD5 | d2c4ad0cd64116b2ffa38736ebe83356 |
|
BLAKE2b-256 | 9769ef028f0b04dde139c4656ea81b398fd238800c770c372ad4ffb780eec973 |