Forecasting tools
Project description
Anticipy
Anticipy is a tool to generate forecasts for time series. It takes a pandas Series or DataFrame as input, and returns a DataFrame with the forecasted values for a given period of time.
Features:
- Simple interface. Start forecasting with a single function call on a pandas DataFrame.
- Model selection. If you provide different multiple models (e.g. linear, sigmoidal, exponential), the tool will compare them and choose the best fit for your data.
- Trend and seasonality. Support for weekly and monthly seasonality, among other types.
- Calendar events. Provide lists of special dates, such as holiday seasons or bank holidays, to improve model performance.
- Data cleaning. The library has tools to identify and remove outliers, and to detect and handle step changes in the data.
It is straightforward to generate a simple linear model with the tool - just call forecast.run_forecast(my_dataframe)
: ::
import pandas as pd, numpy as np from anticipy import forecast
df = pd.DataFrame({'y': np.arange(0., 5)}, index=pd.date_range('2018-01-01', periods=5, freq='D')) df_forecast = forecast.run_forecast(df, extrapolate_years=1) print(df_forecast.head(12))
Output: ::
. date source is_actuals model y q5 q20 q80 q95
0 2018-01-01 src True actuals 0.0 NaN NaN NaN NaN
1 2018-01-02 src True actuals 1.0 NaN NaN NaN NaN
2 2018-01-03 src True actuals 2.0 NaN NaN NaN NaN
3 2018-01-04 src True actuals 3.0 NaN NaN NaN NaN
4 2018-01-05 src True actuals 4.0 NaN NaN NaN NaN
5 2018-01-01 src False linear 0.0 NaN NaN NaN NaN
6 2018-01-02 src False linear 1.0 NaN NaN NaN NaN
7 2018-01-03 src False linear 2.0 NaN NaN NaN NaN
8 2018-01-04 src False linear 3.0 NaN NaN NaN NaN
9 2018-01-05 src False linear 4.0 NaN NaN NaN NaN
10 2018-01-06 src False linear 5.0 5.0 5.0 5.0 5.0
11 2018-01-07 src False linear 6.0 6.0 6.0 6.0 6.0
Documentation is available in Read the Docs <https://anticipy.readthedocs.io/en/latest/>
_
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file anticipy-0.2.1.tar.gz
.
File metadata
- Download URL: anticipy-0.2.1.tar.gz
- Upload date:
- Size: 70.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | adf5e2ee1d831a72a8fb77c533cff37220d772cd7b06186cced2e99834a0f7eb |
|
MD5 | 6d4a9b94461a282498572940b41ddd28 |
|
BLAKE2b-256 | 3138be6fd7eb64c91b8f788942ebd2c889ce2763e8494137d0a5c232fd379f80 |
File details
Details for the file anticipy-0.2.1-py3-none-any.whl
.
File metadata
- Download URL: anticipy-0.2.1-py3-none-any.whl
- Upload date:
- Size: 74.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0739500f688b863df5f286d7de62d4e48af0a16cc2eeb136bbd80f3307b1543a |
|
MD5 | 9a22bf879006d38b9c85891fe1bc142f |
|
BLAKE2b-256 | a1fa407513cfd84f8c967a757204b425ec8e573a059f259d9f2810b38525afff |