Forecasting tools
Project description
[](https://img.shields.io/pypi/v/anticipy.svg)
[](https://travis-ci.com/sky-uk/anticipy)
[](https://anticipy.readthedocs.io/en/latest/?badge=latest)
[](https://codecov.io/github/sky-uk/anticipy/)
# Anticipy
Anticipy is a tool to generate forecasts for time series. It takes a pandas Series or DataFrame as input, and
returns a DataFrame with the forecasted values for a given period of time.
Features:
* **Simple interface**. Start forecasting with a single function call on a pandas DataFrame.
* **Model selection**. If you provide different multiple models (e.g. linear, sigmoidal, exponential), the tool will
compare them and choose the best fit for your data.
* **Trend and seasonality**. Support for weekly and monthly seasonality, among other types.
* **Calendar events**. Provide lists of special dates, such as holiday seasons or bank holidays, to improve model
performance.
* **Data cleaning**. The library has tools to identify and remove outliers, and to detect and handle step changes in
the data.
It is straightforward to generate a simple linear model with the tool - just call forecast.run_forecast(my_dataframe):
```python
import pandas as pd, numpy as np
from anticipy import forecast
df = pd.DataFrame({'y': np.arange(0., 5)}, index=pd.date_range('2018-01-01', periods=5, freq='D'))
df_forecast = forecast.run_forecast(df, extrapolate_years=1)
print(df_forecast.head(12))
```
Output:
```
. date model y is_actuals
0 2018-01-01 y 0.000000e+00 True
1 2018-01-02 y 1.000000e+00 True
2 2018-01-03 y 2.000000e+00 True
3 2018-01-04 y 3.000000e+00 True
4 2018-01-05 y 4.000000e+00 True
5 2018-01-01 linear 5.551115e-17 False
6 2018-01-02 linear 1.000000e+00 False
7 2018-01-03 linear 2.000000e+00 False
8 2018-01-04 linear 3.000000e+00 False
9 2018-01-05 linear 4.000000e+00 False
10 2018-01-06 linear 5.000000e+00 False
11 2018-01-07 linear 6.000000e+00 False
```
Documentation is available in [Read the Docs](https://anticipy.readthedocs.io/en/latest/)
[](https://travis-ci.com/sky-uk/anticipy)
[](https://anticipy.readthedocs.io/en/latest/?badge=latest)
[](https://codecov.io/github/sky-uk/anticipy/)
# Anticipy
Anticipy is a tool to generate forecasts for time series. It takes a pandas Series or DataFrame as input, and
returns a DataFrame with the forecasted values for a given period of time.
Features:
* **Simple interface**. Start forecasting with a single function call on a pandas DataFrame.
* **Model selection**. If you provide different multiple models (e.g. linear, sigmoidal, exponential), the tool will
compare them and choose the best fit for your data.
* **Trend and seasonality**. Support for weekly and monthly seasonality, among other types.
* **Calendar events**. Provide lists of special dates, such as holiday seasons or bank holidays, to improve model
performance.
* **Data cleaning**. The library has tools to identify and remove outliers, and to detect and handle step changes in
the data.
It is straightforward to generate a simple linear model with the tool - just call forecast.run_forecast(my_dataframe):
```python
import pandas as pd, numpy as np
from anticipy import forecast
df = pd.DataFrame({'y': np.arange(0., 5)}, index=pd.date_range('2018-01-01', periods=5, freq='D'))
df_forecast = forecast.run_forecast(df, extrapolate_years=1)
print(df_forecast.head(12))
```
Output:
```
. date model y is_actuals
0 2018-01-01 y 0.000000e+00 True
1 2018-01-02 y 1.000000e+00 True
2 2018-01-03 y 2.000000e+00 True
3 2018-01-04 y 3.000000e+00 True
4 2018-01-05 y 4.000000e+00 True
5 2018-01-01 linear 5.551115e-17 False
6 2018-01-02 linear 1.000000e+00 False
7 2018-01-03 linear 2.000000e+00 False
8 2018-01-04 linear 3.000000e+00 False
9 2018-01-05 linear 4.000000e+00 False
10 2018-01-06 linear 5.000000e+00 False
11 2018-01-07 linear 6.000000e+00 False
```
Documentation is available in [Read the Docs](https://anticipy.readthedocs.io/en/latest/)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
anticipy-0.1.1.tar.gz
(55.9 kB
view hashes)
Built Distribution
anticipy-0.1.1-py2-none-any.whl
(63.4 kB
view hashes)