Skip to main content

Antigranular Enterprise is a robust, scalable version of the Antigranular platform. It combines the power of differential privacy, providing a secure environment for handling and unlocking the full potential of unseen data. With enhanced features and dedicated support, Antigranular Enterprise is the ideal solution for businesses seeking to leverage the power of data privacy and security.

Project description

Antigranular Enterprise: Secure, Privacy-Preserving Data Science in Jupyter and Python Environments

The antigranular_enterprise package is a specialized client designed for secure and private interactions with the Antigranular Enterprise platform. It supports data analysis and model training in both Jupyter notebook and standard Python interactive shell environments, emphasizing privacy and data protection. This documentation provides guidance on installing, configuring, and utilizing the client package to fully integrate the capabilities of Antigranular Enterprise into your data science workflows.

Installation

To integrate Antigranular Enterprise with your environment, install the package using pip:

pip install antigranular_enterprise

This command installs the antigranular_enterprise package and its necessary dependencies, setting up your environment for secure, privacy-preserving data science operations.

Configuration

Initial Configuration

Configure the package to communicate with your Antigranular Enterprise instance. Essential parameters include:

  • AGENT Jupyter Server URL: URL for the proxy server routing requests to the Antigranular platform.
  • AGENT Jupyter Server Port: Port on which the proxy listens.
  • AGENT Console URL: URL for accessing the Antigranular management console.
  • TLS Enabled: Set to true if TLS is enabled for the proxy to ensure secure communication.

Configuration Methods

Configure your environment to interact with the Antigranular Enterprise platform in a way that best suits your setup and preferences.

Direct Configuration via UI URL

This is the simplest and recommended method for configuration:

  1. Navigate to the UI Configuration Page: Open your browser and visit https://<ui_url>/config/client.

  2. Copy the Configuration Code: The page will display a pre-formatted configuration snippet.

  3. Execute the Configuration Code: Run the copied code in your environment to automatically load the configuration.

    import antigranular_enterprise as ag
    ag.load_config("https://<ui_url>/config/client", profile='default')
    

Using write_config

Alternatively, you can manually set up the configuration:

  1. Import the Package: Begin by importing antigranular_enterprise.

    import antigranular_enterprise as ag
    
  2. Write the Configuration:

    Save your configuration settings using the write_config method:

    ag.write_config(profile='default', yaml_config="""
    agent_jupyter_url: <Jupyter URL>
    agent_jupyter_port: <Jupyter Port>
    agent_console_url: <Console URL>
    tls_enabled: true
    """)
    

    Replace placeholders with the appropriate values for your environment.

Client Login and Execution

Jupyter Notebook

Login

Log in to the Antigranular Enterprise services from Jupyter notebooks:

client = ag.login("<api_key>")

After entering your API key, a UI notification or link will prompt you for approval. Once approved, your session starts, allowing secure interactions with the Antigranular platform.

Executing Commands

In Jupyter notebooks, use the %%ag magic command to execute code securely on the server:

%%ag
ag_print("hello", "world")

Python Interactive Shell

Login and Execution Script

This script demonstrates a simple login to the Antigranular server, executes a basic print command, and displays the server's response directly.

script.py:

import antigranular_enterprise as ag

# Login and execute a remote command
session = ag.login("Your_API_Key")
response = session.execute("ag_print('Hello', 'World!')")
print(response)

# Export a server variable to the local environment, passing the globals() dictionary to the execute method
session.execute("var = 'test'; export(var, 'varlocal')", globals())
print(varlocal)  # Outputs: test

# Terminate the session
terminate_session_response = session.terminate_session()
print(terminate_session_response)  # Outputs: {'status': 'ok'}

Output:

> python script.py
Connected to Antigranular server session id: <masked>
Hello World!
Setting up exported variable in local environment: varlocal
test
{'status': 'ok'}

Supported Methods for both Jupyter and Non-Jupyter Environments

All package methods are supported within these sessions, including:

  • interrupt_kernel(): Interrupts the currently running kernel.
  • terminate_session(): Terminates the session and cleans up resources.
  • privacy_odometer(): Returns the amount of epsilon and delta used.
  • private_import(): Imports a user-provided model or dataset into the AG server securely.

Features and Usage

The antigranular_enterprise package offers a suite of features for secure data analysis and model training, with robust support for privacy regulations. It is designed to integrate seamlessly into Jupyter notebooks and Python interactive shells, enhancing the data science workflow with privacy-preserving capabilities.

For further information or support, please consult the Antigranular Enterprise platform's detailed documentation or contact our support team directly.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

antigranular_enterprise-1.3.0.tar.gz (16.1 kB view details)

Uploaded Source

Built Distribution

antigranular_enterprise-1.3.0-py3-none-any.whl (20.1 kB view details)

Uploaded Python 3

File details

Details for the file antigranular_enterprise-1.3.0.tar.gz.

File metadata

File hashes

Hashes for antigranular_enterprise-1.3.0.tar.gz
Algorithm Hash digest
SHA256 bfe24e8a6e5b9cff539b6c73572aea21a58b3b6af017978249f1a42a6966b70c
MD5 47c0a97d97e06d618240d5d839b22683
BLAKE2b-256 815ea39e6b82eb913d3c94d0d7dc525878f0ff5b542565129f9d1e5a10aa4778

See more details on using hashes here.

File details

Details for the file antigranular_enterprise-1.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for antigranular_enterprise-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2e2aea81b0c271c3d0abaf2ed3afcda135093a9734b3161c380e8567e01b09dc
MD5 8dc345f9e3dc9be981d78692df1c9d61
BLAKE2b-256 72ca8ce079b5a347544010ccc57ca7a4bd3a1fd67369f3a035d373947b5bf3e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page