Skip to main content

A collection of deep learning architectures ported to the python language and tools for basic medical image processing.

Project description

Build Status Contributor Covenant

ANTsPyNet

A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Based on keras and tensorflow with cross-compatibility with our R analog ANTsRNet.

Documentation page https://antsx.github.io/ANTsPyNet/.

ANTsXNetTools

For MacOS and Linux, may install with:

pip install antspynet

Architectures

Image voxelwise segmentation/regression

Image classification/regression

Object detection

Image super-resolution

Registration and transforms

Generative adverserial networks

Clustering

Applications

Miscellaneous


Installation

  • ANTsPyNet Installation:
    • Option 1:
      $ git clone https://github.com/ANTsX/ANTsPyNet
      $ cd ANTsPyNet
      $ python setup.py install
      

Publications

  • Nicholas J. Tustison, Talissa A. Altes, Kun Qing, Mu He, G. Wilson Miller, Brian B. Avants, Yun M. Shim, James C. Gee, John P. Mugler III, and Jaime F. Mata. Image- vs. histogram-based considerations in semantic segmentation of pulmonary hyperpolarized gas images. Magnetic Resonance in Medicine. Accepted

  • Nicholas J. Tustison, Philip A. Cook, Andrew J. Holbrook, Hans J. Johnson, John Muschelli, Gabriel A. Devenyi, Jeffrey T. Duda, Sandhitsu R. Das, Nicholas C. Cullen, Daniel L. Gillen, Michael A. Yassa, James R. Stone, James C. Gee, and Brian B. Avants for the Alzheimer’s Disease Neuroimaging Initiative. The ANTsX ecosystem for quantitative biological and medical imaging. Scientific Reports. 11(1):9068, Apr 2021. (pubmed)

  • Andrew T. Grainger, Arun Krishnaraj, Michael H. Quinones, Nicholas J. Tustison, Samantha Epstein, Daniela Fuller, Aakash Jha, Kevin L. Allman, Weibin Shi. Deep Learning-based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images, Academic Radiology. (pubmed)

  • Nicholas J. Tustison, Brian B. Avants, and James C. Gee. Learning image-based spatial transformations via convolutional neural networks: a review, Magnetic Resonance Imaging, 64:142-153, Dec 2019. (pubmed)

  • Nicholas J. Tustison, Brian B. Avants, Zixuan Lin, Xue Feng, Nicholas Cullen, Jaime F. Mata, Lucia Flors, James C. Gee, Talissa A. Altes, John P. Mugler III, and Kun Qing. Convolutional Neural Networks with Template-Based Data Augmentation for Functional Lung Image Quantification, Academic Radiology, 26(3):412-423, Mar 2019. (pubmed)

  • Andrew T. Grainger, Nicholas J. Tustison, Kun Qing, Rene Roy, Stuart S. Berr, and Weibin Shi. Deep learning-based quantification of abdominal fat on magnetic resonance images. PLoS One, 13(9):e0204071, Sep 2018. (pubmed)

  • Cullen N.C., Avants B.B. (2018) Convolutional Neural Networks for Rapid and Simultaneous Brain Extraction and Tissue Segmentation. In: Spalletta G., Piras F., Gili T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY doi

Acknowledgments

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

antspynet-0.1.2.tar.gz (103.2 kB view details)

Uploaded Source

Built Distribution

antspynet-0.1.2-py3-none-any.whl (143.1 kB view details)

Uploaded Python 3

File details

Details for the file antspynet-0.1.2.tar.gz.

File metadata

  • Download URL: antspynet-0.1.2.tar.gz
  • Upload date:
  • Size: 103.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.5.0.1 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1

File hashes

Hashes for antspynet-0.1.2.tar.gz
Algorithm Hash digest
SHA256 97b7c5b033c47191dca665d020de75d10c99d8a748ba076eae4b4116886311b4
MD5 2e35b77120f6e3c25f19a234c1d9366e
BLAKE2b-256 21416e7651c1a5c2185f8b296df980c92bd9b9b459b7c5034a374794ea1c456d

See more details on using hashes here.

Provenance

File details

Details for the file antspynet-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: antspynet-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 143.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.5.0.1 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1

File hashes

Hashes for antspynet-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 523938d86647a88521e382fd2561f6dc88ac32f3c11569cf7f6419f50afa4cfc
MD5 1c3cd08b38c3a85daa325d8d43c64353
BLAKE2b-256 095f299ed47f19e0efce3b377b26559f71294d7909452c930e2f96331213757b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page