Skip to main content

A collection of deep learning architectures ported to the python language and tools for basic medical image processing.

Project description

Build Status Contributor Covenant

ANTsPyNet

A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Based on keras and tensorflow with cross-compatibility with our R analog ANTsRNet.

Documentation page https://antsx.github.io/ANTsPyNet/.

ANTsXNetTools

For MacOS and Linux, may install with:

pip install antspynet

Architectures

Image voxelwise segmentation/regression

Image classification/regression

Object detection

Image super-resolution

Registration and transforms

Generative adverserial networks

Clustering

Applications

Miscellaneous


Installation

  • ANTsPyNet Installation:
    • Option 1:
      $ git clone https://github.com/ANTsX/ANTsPyNet
      $ cd ANTsPyNet
      $ python setup.py install
      

Publications

  • Nicholas J. Tustison, Talissa A. Altes, Kun Qing, Mu He, G. Wilson Miller, Brian B. Avants, Yun M. Shim, James C. Gee, John P. Mugler III, and Jaime F. Mata. Image- versus histogram-based considerations in semantic segmentation of pulmonary hyperpolarized gas images. Magnetic Resonance in Medicine. (pubmed)

  • Nicholas J. Tustison, Philip A. Cook, Andrew J. Holbrook, Hans J. Johnson, John Muschelli, Gabriel A. Devenyi, Jeffrey T. Duda, Sandhitsu R. Das, Nicholas C. Cullen, Daniel L. Gillen, Michael A. Yassa, James R. Stone, James C. Gee, and Brian B. Avants for the Alzheimer’s Disease Neuroimaging Initiative. The ANTsX ecosystem for quantitative biological and medical imaging. Scientific Reports. 11(1):9068, Apr 2021. (pubmed)

  • Andrew T. Grainger, Arun Krishnaraj, Michael H. Quinones, Nicholas J. Tustison, Samantha Epstein, Daniela Fuller, Aakash Jha, Kevin L. Allman, Weibin Shi. Deep Learning-based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images, Academic Radiology. (pubmed)

  • Nicholas J. Tustison, Brian B. Avants, and James C. Gee. Learning image-based spatial transformations via convolutional neural networks: a review, Magnetic Resonance Imaging, 64:142-153, Dec 2019. (pubmed)

  • Nicholas J. Tustison, Brian B. Avants, Zixuan Lin, Xue Feng, Nicholas Cullen, Jaime F. Mata, Lucia Flors, James C. Gee, Talissa A. Altes, John P. Mugler III, and Kun Qing. Convolutional Neural Networks with Template-Based Data Augmentation for Functional Lung Image Quantification, Academic Radiology, 26(3):412-423, Mar 2019. (pubmed)

  • Andrew T. Grainger, Nicholas J. Tustison, Kun Qing, Rene Roy, Stuart S. Berr, and Weibin Shi. Deep learning-based quantification of abdominal fat on magnetic resonance images. PLoS One, 13(9):e0204071, Sep 2018. (pubmed)

  • Cullen N.C., Avants B.B. (2018) Convolutional Neural Networks for Rapid and Simultaneous Brain Extraction and Tissue Segmentation. In: Spalletta G., Piras F., Gili T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY doi

Acknowledgments

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

antspynet-0.1.3.tar.gz (110.8 kB view details)

Uploaded Source

Built Distribution

antspynet-0.1.3-py3-none-any.whl (151.3 kB view details)

Uploaded Python 3

File details

Details for the file antspynet-0.1.3.tar.gz.

File metadata

  • Download URL: antspynet-0.1.3.tar.gz
  • Upload date:
  • Size: 110.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.5.0 pkginfo/1.5.0.1 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1

File hashes

Hashes for antspynet-0.1.3.tar.gz
Algorithm Hash digest
SHA256 f85767b1618881669434c260a3c4560f825a2653dc1c8aba42db2a6272ffcc46
MD5 01e1b9c0f3be89d85c7c35aeaec9540e
BLAKE2b-256 adc6683126900a64a34ba16064b459ae76036fd268b614d283759e3085cd049a

See more details on using hashes here.

Provenance

File details

Details for the file antspynet-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: antspynet-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 151.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.5.0 pkginfo/1.5.0.1 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1

File hashes

Hashes for antspynet-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 7a6ce83b8bff6738f1781aee5d6857353c0cc8024fdec1266967c960555d512d
MD5 891fb146ce99622f1ababddc708b4aa9
BLAKE2b-256 2d94296cd305f131c238af9f2737f62ca35cf09e42f47a9bea22a1b8961635aa

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page