A collection of deep learning architectures ported to the python language and tools for basic medical image processing.
Project description
ANTsPyNet
A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Based on keras
and tensorflow
with cross-compatibility with our R analog ANTsRNet.
Documentation page https://antsx.github.io/ANTsPyNet/.
For MacOS and Linux, may install with:
pip install antspynet
Architectures
Image voxelwise segmentation/regression
Image classification/regression
- AlexNet (2-D, 3-D)
- VGG (2-D, 3-D)
- ResNet (2-D, 3-D)
- ResNeXt (2-D, 3-D)
- WideResNet (2-D, 3-D)
- DenseNet (2-D, 3-D)
Object detection
Image super-resolution
- Super-resolution convolutional neural network (SRCNN) (2-D, 3-D)
- Expanded super-resolution (ESRCNN) (2-D, 3-D)
- Denoising auto encoder super-resolution (DSRCNN) (2-D, 3-D)
- Deep denoise super-resolution (DDSRCNN) (2-D, 3-D)
- ResNet super-resolution (SRResNet) (2-D, 3-D)
- Deep back-projection network (DBPN) (2-D, 3-D)
- Super resolution GAN
Registration and transforms
Generative adverserial networks
- Generative adverserial network (GAN)
- Deep Convolutional GAN
- Wasserstein GAN
- Improved Wasserstein GAN
- Cycle GAN
- Super resolution GAN
Clustering
Applications
- MRI super-resolution
- Multi-modal brain extraction
- T1
- T1 "no brainer"
- FLAIR
- T2
- FA
- BOLD
- T1/T2 infant
- Six-tissue Atropos brain segmentation
- Cortical thickness
- Brain age
- Hippmapp3r hippocampal segmentation
- White matter hyperintensity segmentation
- Hypothalamus segmentation
- Claustrum segmentation
- Deep Flash
- Desikan-Killiany-Tourville cortical labeling
- Lung extraction
- Proton
- CT
- Functional lung segmentation
- Neural style transfer
- Image quality assessment
Miscellaneous
Installation
- ANTsPyNet Installation:
- Option 1:
$ git clone https://github.com/ANTsX/ANTsPyNet $ cd ANTsPyNet $ python setup.py install
- Option 1:
Publications
-
Nicholas J. Tustison, Talissa A. Altes, Kun Qing, Mu He, G. Wilson Miller, Brian B. Avants, Yun M. Shim, James C. Gee, John P. Mugler III, and Jaime F. Mata. Image- versus histogram-based considerations in semantic segmentation of pulmonary hyperpolarized gas images. Magnetic Resonance in Medicine, 86(5):2822-2836, Nov 2021. (pubmed)
-
Andrew T. Grainger, Arun Krishnaraj, Michael H. Quinones, Nicholas J. Tustison, Samantha Epstein, Daniela Fuller, Aakash Jha, Kevin L. Allman, Weibin Shi. Deep Learning-based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images, Academic Radiology, 28(11):1481-1487, Nov 2021. (pubmed)
-
Nicholas J. Tustison, Philip A. Cook, Andrew J. Holbrook, Hans J. Johnson, John Muschelli, Gabriel A. Devenyi, Jeffrey T. Duda, Sandhitsu R. Das, Nicholas C. Cullen, Daniel L. Gillen, Michael A. Yassa, James R. Stone, James C. Gee, and Brian B. Avants for the Alzheimer’s Disease Neuroimaging Initiative. The ANTsX ecosystem for quantitative biological and medical imaging. Scientific Reports. 11(1):9068, Apr 2021. (pubmed)
-
Nicholas J. Tustison, Brian B. Avants, and James C. Gee. Learning image-based spatial transformations via convolutional neural networks: a review, Magnetic Resonance Imaging, 64:142-153, Dec 2019. (pubmed)
-
Nicholas J. Tustison, Brian B. Avants, Zixuan Lin, Xue Feng, Nicholas Cullen, Jaime F. Mata, Lucia Flors, James C. Gee, Talissa A. Altes, John P. Mugler III, and Kun Qing. Convolutional Neural Networks with Template-Based Data Augmentation for Functional Lung Image Quantification, Academic Radiology, 26(3):412-423, Mar 2019. (pubmed)
-
Andrew T. Grainger, Nicholas J. Tustison, Kun Qing, Rene Roy, Stuart S. Berr, and Weibin Shi. Deep learning-based quantification of abdominal fat on magnetic resonance images. PLoS One, 13(9):e0204071, Sep 2018. (pubmed)
-
Cullen N.C., Avants B.B. (2018) Convolutional Neural Networks for Rapid and Simultaneous Brain Extraction and Tissue Segmentation. In: Spalletta G., Piras F., Gili T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY doi
Acknowledgments
-
We gratefully acknowledge the support of the NVIDIA Corporation with the donation of two Titan Xp GPUs used for this research.
-
We gratefully acknowledge the grant support of the Office of Naval Research and Cohen Veterans Bioscience.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file antspynet-0.1.6.tar.gz
.
File metadata
- Download URL: antspynet-0.1.6.tar.gz
- Upload date:
- Size: 112.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5c6731a920ad5eabf4a1a7178567de5c18c13a31e7d73e0696e907fde4bc8651 |
|
MD5 | 3ec9d23bedd12061b7b99e2315b0ba31 |
|
BLAKE2b-256 | 283e567b43ff273d8fca1e8c8a571dc5dd1c16553ee499387f891d80323a85ae |
Provenance
File details
Details for the file antspynet-0.1.6-py3-none-any.whl
.
File metadata
- Download URL: antspynet-0.1.6-py3-none-any.whl
- Upload date:
- Size: 152.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | eb3cdc04ef54982c3db7da02a595694ba80947b960bbeb87f2b86a96f18e9593 |
|
MD5 | 09c64c3318b26ad3aa2e44f4ea653675 |
|
BLAKE2b-256 | 46ce96780199e87fd82182f0e0a173bb71c8c5fc7db4a9a5e160ba054a9384cd |