Skip to main content

A collection of deep learning architectures ported to the python language and tools for basic medical image processing.

Project description

Build Status Contributor Covenant

ANTsPyNet

A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Based on keras and tensorflow with cross-compatibility with our R analog ANTsRNet.

Documentation page https://antsx.github.io/ANTsPyNet/.

ANTsXNetTools

For MacOS and Linux, may install with:

pip install antspynet

Architectures

Image voxelwise segmentation/regression

Image classification/regression

Object detection

Image super-resolution

Registration and transforms

Generative adverserial networks

Clustering

Applications

Miscellaneous


Installation

  • ANTsPyNet Installation:
    • Option 1:
      $ git clone https://github.com/ANTsX/ANTsPyNet
      $ cd ANTsPyNet
      $ python setup.py install
      

Publications

  • Nicholas J. Tustison, Talissa A. Altes, Kun Qing, Mu He, G. Wilson Miller, Brian B. Avants, Yun M. Shim, James C. Gee, John P. Mugler III, and Jaime F. Mata. Image- versus histogram-based considerations in semantic segmentation of pulmonary hyperpolarized gas images. Magnetic Resonance in Medicine, 86(5):2822-2836, Nov 2021. (pubmed)

  • Andrew T. Grainger, Arun Krishnaraj, Michael H. Quinones, Nicholas J. Tustison, Samantha Epstein, Daniela Fuller, Aakash Jha, Kevin L. Allman, Weibin Shi. Deep Learning-based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images, Academic Radiology, 28(11):1481-1487, Nov 2021. (pubmed)

  • Nicholas J. Tustison, Philip A. Cook, Andrew J. Holbrook, Hans J. Johnson, John Muschelli, Gabriel A. Devenyi, Jeffrey T. Duda, Sandhitsu R. Das, Nicholas C. Cullen, Daniel L. Gillen, Michael A. Yassa, James R. Stone, James C. Gee, and Brian B. Avants for the Alzheimer’s Disease Neuroimaging Initiative. The ANTsX ecosystem for quantitative biological and medical imaging. Scientific Reports. 11(1):9068, Apr 2021. (pubmed)

  • Nicholas J. Tustison, Brian B. Avants, and James C. Gee. Learning image-based spatial transformations via convolutional neural networks: a review, Magnetic Resonance Imaging, 64:142-153, Dec 2019. (pubmed)

  • Nicholas J. Tustison, Brian B. Avants, Zixuan Lin, Xue Feng, Nicholas Cullen, Jaime F. Mata, Lucia Flors, James C. Gee, Talissa A. Altes, John P. Mugler III, and Kun Qing. Convolutional Neural Networks with Template-Based Data Augmentation for Functional Lung Image Quantification, Academic Radiology, 26(3):412-423, Mar 2019. (pubmed)

  • Andrew T. Grainger, Nicholas J. Tustison, Kun Qing, Rene Roy, Stuart S. Berr, and Weibin Shi. Deep learning-based quantification of abdominal fat on magnetic resonance images. PLoS One, 13(9):e0204071, Sep 2018. (pubmed)

  • Cullen N.C., Avants B.B. (2018) Convolutional Neural Networks for Rapid and Simultaneous Brain Extraction and Tissue Segmentation. In: Spalletta G., Piras F., Gili T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY doi

Acknowledgments

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

antspynet-0.1.7.tar.gz (112.4 kB view details)

Uploaded Source

Built Distribution

antspynet-0.1.7-py3-none-any.whl (152.6 kB view details)

Uploaded Python 3

File details

Details for the file antspynet-0.1.7.tar.gz.

File metadata

  • Download URL: antspynet-0.1.7.tar.gz
  • Upload date:
  • Size: 112.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for antspynet-0.1.7.tar.gz
Algorithm Hash digest
SHA256 08dc42bebc91fb527b4449e8900bc1efa92307e3a9eba644119f3ef96b80d3e1
MD5 dc67482b62d7c5c9b4e5665e5d4c014b
BLAKE2b-256 c8402199ab3b074b28edb05a7b94c43d45852b9536d27687105dac6f45ea34e0

See more details on using hashes here.

Provenance

File details

Details for the file antspynet-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: antspynet-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 152.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for antspynet-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 01648959780330fe10d7fa062f85cc2bd97c63aee43b3ef8aa9ac6c67a17428a
MD5 748cceacb085d7e160dc58016cede897
BLAKE2b-256 a4bdce5d588d6da2f9e56a86842de9f7489f159dfecf136be26e528b4dc3d4e1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page