ml and single cell utils.
Project description
ML and single cell analysis utils.
usage
general utils: anutils.*
anutls.glimpse is similar to dplyr::glimpse in R, but enhanced in: - display the index - when passing show_unique=True, display the number of unique values for each column - when passing show_unique=True, display the unique values instead of the first N values for each column
import anutils as anu
df = pd.DataFrame({
'name': ['Alice', 'Bob', 'Carol', 'David', 'Eric'],
'letters': ['a', 'a', 'b', 'b', 'c'],
'digits': [1, 2, 3, 3, 3],
'colors': ['r', 'g', 'b', 'k', 'k'],
})
df.index = df['name']
anu.glimpse(df, show_unique=True)
# output:
# DataFrame: 5 rows, 4 columns
# index (name) <object> (5) ['Alice', 'Bob', 'Carol', 'David', 'Eric']
# $ name <object> (5) ['Alice', 'Bob', 'Carol', 'David', 'Eric']
# $ letters <object> (3) ['a', 'b', 'c']
# $ digits <int64> (3) [1, 2, 3]
# $ colors <object> (4) ['r', 'g', 'b', 'k']
single cell utils: anutils.scutils.*
plotting
from anutils import scutils as scu
# a series of embeddings grouped by disease status
scu.pl.embeddings(adata, basis='X_umap', groupby='disease_status', **kwargs) # kwargs for sc.pl.embedding
# enhanced dotplot with groups in hierarchical order
scu.pl.dotplot(adata, var_names, groupby, **kwargs) # kwargs for sc.pl.dotplot
cuda-accelerated scanpy functions
NOTE: to use these functions, you need to install rapids first. see installation for details.
from anutils.scutils import sc_cuda as cusc
# 10-100 times faster than `scanpy.tl.leiden`
cusc.sc.leiden(adata, resolution=0.5, key_added='leiden_0.5')
# 10-100 times faster than `scib.metrics.silhouette`
cusc.sb.silhouette(adata, group_key, embed)
machine learning utils:
import anutils.mlutils as ml
# to be added
installation
pip install anutils
NOTE: To use anutils.scutils.sc_cuda, you need to install rapids first. see rapids.ai for details. For example, to install rapids on a linux machine with cuda 11, you can run:
pip install cudf-cu11 dask-cudf-cu11 --extra-index-url=https://pypi.nvidia.com
pip install cuml-cu11 --extra-index-url=https://pypi.nvidia.com
pip install cugraph-cu11 --extra-index-url=https://pypi.nvidia.com
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file anutils-0.4.5.tar.gz
.
File metadata
- Download URL: anutils-0.4.5.tar.gz
- Upload date:
- Size: 39.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c01a0972afc54a7bb9558e202eec327a1d440085bb5377491d320131d1062fdd |
|
MD5 | 95a23f51d6cd4332ab52d93afa3382be |
|
BLAKE2b-256 | 13ee592e2609f0e19523d3c804ba0bc614f4485650608034d9f39c705221b04a |