Skip to main content

Add your description here

Project description

any-llm-client

A unified and lightweight asynchronous Python API for communicating with LLMs. It supports multiple providers, including OpenAI Chat Completions API (and any OpenAI-compatible API, such as Ollama and vLLM) and YandexGPT API.

How To Use

Before starting using any-llm-client, make sure you have it installed:

uv add any-llm-client
poetry add any-llm-client

Response API

Here's a full example that uses Ollama and Qwen2.5-Coder:

import asyncio

import any_llm_client


config = any_llm_client.OpenAIConfig(url="http://127.0.0.1:11434/v1/chat/completions", model_name="qwen2.5-coder:1.5b")


async def main() -> None:
    async with any_llm_client.get_client(config) as client:
        print(await client.request_llm_message("Кек, чо как вообще на нарах?"))


asyncio.run(main())

To use YandexGPT, replace the config:

config = any_llm_client.YandexGPTConfig(
    auth_header=os.environ["YANDEX_AUTH_HEADER"], folder_id=os.environ["YANDEX_FOLDER_ID"], model_name="yandexgpt"
)

Streaming API

LLMs often take long time to respond fully. Here's an example of streaming API usage:

import asyncio

import any_llm_client


config = any_llm_client.OpenAIConfig(url="http://127.0.0.1:11434/v1/chat/completions", model_name="qwen2.5-coder:1.5b")


async def main() -> None:
    async with (
        any_llm_client.get_client(config) as client,
        client.stream_llm_partial_messages("Кек, чо как вообще на нарах?") as partial_messages,
    ):
        async for message in partial_messages:
            print("\033[2J")  # clear screen
            print(message)


asyncio.run(main())

Note that this will yield partial growing message, not message chunks, for example: "Hi", "Hi there!", "Hi there! How can I help you?".

Passing chat history and temperature

You can pass list[any_llm_client.Message] instead of str as the first argument, and set temperature:

async with (
    any_llm_client.get_client(config) as client,
    client.stream_llm_partial_messages(
        messages=[
            any_llm_client.Message(role="system", text="Ты — опытный ассистент"),
            any_llm_client.Message(role="user", text="Кек, чо как вообще на нарах?"),
        ],
        temperature=1.0,
    ) as partial_messages,
):
    ...

Other

Mock client

You can use a mock client for testing:

config = any_llm_client.MockLLMConfig(
    response_message=...,
    stream_messages=["Hi!"],
)
client = any_llm_client.get_client(config, ...)

Using dynamic LLM config from environment with pydantic-settings

import os

import pydantic_settings

import any_llm_client


class Settings(pydantic_settings.BaseSettings):
    llm_model: any_llm_client.AnyLLMConfig


os.environ["LLM_MODEL"] = """{
    "api_type": "openai",
    "url": "http://127.0.0.1:11434/v1/chat/completions",
    "model_name": "qwen2.5-coder:1.5b"
}"""
settings = Settings()
client = any_llm_client.get_client(settings.llm_model, ...)

Using clients directly

The recommended way to get LLM client is to call any_llm_client.get_client(). This way you can easily swap LLM models. If you prefer, you can use any_llm_client.OpenAIClient or any_llm_client.YandexGPTClient directly:

config = any_llm_client.OpenAIConfig(
    url=pydantic.HttpUrl("https://api.openai.com/v1/chat/completions"),
    auth_token=os.environ["OPENAI_API_KEY"],
    model_name="gpt-4o-mini",
)
client = any_llm_client.OpenAIClient(config, ...)

Errors

any_llm_client.LLMClient.request_llm_message() and any_llm_client.LLMClient.stream_llm_partial_messages() will raise any_llm_client.LLMError or any_llm_client.OutOfTokensOrSymbolsError when the LLM API responds with a failed HTTP status.

Timeouts, proxy & other HTTP settings

Pass custom HTTPX client:

import httpx

import any_llm_client


async with any_llm_client.get_client(
    ...,
    httpx_client=httpx.AsyncClient(
        mounts={"https://api.openai.com": httpx.AsyncHTTPTransport(proxy="http://localhost:8030")},
        timeout=httpx.Timeout(None, connect=5.0),
    ),
) as client:
    ...

Retries

By default, requests are retried 3 times on HTTP status errors. You can change the retry behaviour by supplying request_retry parameter:

client = any_llm_client.get_client(..., request_retry=any_llm_client.RequestRetryConfig(attempts=5, ...))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

any_llm_client-1.0.0.tar.gz (12.1 kB view details)

Uploaded Source

Built Distribution

any_llm_client-1.0.0-py3-none-any.whl (11.7 kB view details)

Uploaded Python 3

File details

Details for the file any_llm_client-1.0.0.tar.gz.

File metadata

  • Download URL: any_llm_client-1.0.0.tar.gz
  • Upload date:
  • Size: 12.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.5.4

File hashes

Hashes for any_llm_client-1.0.0.tar.gz
Algorithm Hash digest
SHA256 9d3d58e4814b3e2812e03677be686ad1563d4551b76ba217866739dda7472f41
MD5 895b43418bb4dac668ecf3b025d369e4
BLAKE2b-256 f9ec7544db246c7f7ecdc5f196937a0e5d3f2ffe5c1fc675cdb31f3dacd217cc

See more details on using hashes here.

File details

Details for the file any_llm_client-1.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for any_llm_client-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e3ea4902553eef4017696121a8fbc51b923557d002ce912b6fb08479e46bf358
MD5 7668ec6b521b3d2d57d324f6b3d09eb4
BLAKE2b-256 e899f907488ede41fe389bd48abc9cdb86c75e725e6c454afec746e1095128b4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page