Skip to main content

Add your description here

Project description

any-llm-client

A unified and lightweight asynchronous Python API for communicating with LLMs.

Supports multiple providers, including OpenAI Chat Completions API (and any OpenAI-compatible API, such as Ollama and vLLM) and YandexGPT API.

How To Use

Before starting using any-llm-client, make sure you have it installed:

uv add any-llm-client
poetry add any-llm-client

Response API

Here's a full example that uses Ollama and Qwen2.5-Coder:

import asyncio

import any_llm_client


config = any_llm_client.OpenAIConfig(url="http://127.0.0.1:11434/v1/chat/completions", model_name="qwen2.5-coder:1.5b")


async def main() -> None:
    async with any_llm_client.get_client(config) as client:
        print(await client.request_llm_message("Кек, чо как вообще на нарах?"))


asyncio.run(main())

To use YandexGPT, replace the config:

config = any_llm_client.YandexGPTConfig(
    auth_header=os.environ["YANDEX_AUTH_HEADER"], folder_id=os.environ["YANDEX_FOLDER_ID"], model_name="yandexgpt"
)

Streaming API

LLMs often take long time to respond fully. Here's an example of streaming API usage:

import asyncio

import any_llm_client


config = any_llm_client.OpenAIConfig(url="http://127.0.0.1:11434/v1/chat/completions", model_name="qwen2.5-coder:1.5b")


async def main() -> None:
    async with (
        any_llm_client.get_client(config) as client,
        client.stream_llm_partial_messages("Кек, чо как вообще на нарах?") as partial_messages,
    ):
        async for message in partial_messages:
            print("\033[2J")  # clear screen
            print(message)


asyncio.run(main())

Note that this will yield partial growing message, not message chunks, for example: "Hi", "Hi there!", "Hi there! How can I help you?".

Passing chat history and temperature

You can pass list of messages instead of str as the first argument, and set temperature:

async with (
    any_llm_client.get_client(config) as client,
    client.stream_llm_partial_messages(
        messages=[
            any_llm_client.SystemMessage("Ты — опытный ассистент"),
            any_llm_client.UserMessage("Кек, чо как вообще на нарах?"),
        ],
        temperature=1.0,
    ) as partial_messages,
):
    ...

Other

Mock client

You can use a mock client for testing:

config = any_llm_client.MockLLMConfig(
    response_message=...,
    stream_messages=["Hi!"],
)

async with any_llm_client.get_client(config, ...) as client:
    ...

Configuration with environment variables

Credentials

Instead of passing credentials directly, you can set corresponding environment variables:

  • OpenAI: ANY_LLM_CLIENT_OPENAI_AUTH_TOKEN,
  • YandexGPT: ANY_LLM_CLIENT_YANDEXGPT_AUTH_HEADER, ANY_LLM_CLIENT_YANDEXGPT_FOLDER_ID.
LLM model config (with pydantic-settings)
import os

import pydantic_settings

import any_llm_client


class Settings(pydantic_settings.BaseSettings):
    llm_model: any_llm_client.AnyLLMConfig


os.environ["LLM_MODEL"] = """{
    "api_type": "openai",
    "url": "http://127.0.0.1:11434/v1/chat/completions",
    "model_name": "qwen2.5-coder:1.5b"
}"""
settings = Settings()

async with any_llm_client.get_client(settings.llm_model, ...) as client:
    ...

Combining with environment variables from previous section, you can keep LLM model configuration and secrets separate.

Using clients directly

The recommended way to get LLM client is to call any_llm_client.get_client(). This way you can easily swap LLM models. If you prefer, you can use any_llm_client.OpenAIClient or any_llm_client.YandexGPTClient directly:

config = any_llm_client.OpenAIConfig(
    url=pydantic.HttpUrl("https://api.openai.com/v1/chat/completions"),
    auth_token=os.environ["OPENAI_API_KEY"],
    model_name="gpt-4o-mini",
)

async with any_llm_client.OpenAIClient(config, ...) as client:
    ...

Errors

any_llm_client.LLMClient.request_llm_message() and any_llm_client.LLMClient.stream_llm_partial_messages() will raise any_llm_client.LLMError or any_llm_client.OutOfTokensOrSymbolsError when the LLM API responds with a failed HTTP status.

Timeouts, proxy & other HTTP settings

Pass custom HTTPX kwargs to any_llm_client.get_client():

import httpx

import any_llm_client


async with any_llm_client.get_client(
    ...,
    mounts={"https://api.openai.com": httpx.AsyncHTTPTransport(proxy="http://localhost:8030")},
    timeout=httpx.Timeout(None, connect=5.0),
) as client:
    ...

Default timeout is httpx.Timeout(None, connect=5.0) (5 seconds on connect, unlimited on read, write or pool).

Retries

By default, requests are retried 3 times on HTTP status errors. You can change the retry behaviour by supplying request_retry parameter:

async with any_llm_client.get_client(..., request_retry=any_llm_client.RequestRetryConfig(attempts=5, ...)) as client:
    ...

Passing extra data to LLM

await client.request_llm_message("Кек, чо как вообще на нарах?", extra={"best_of": 3})

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

any_llm_client-1.2.0.tar.gz (13.3 kB view details)

Uploaded Source

Built Distribution

any_llm_client-1.2.0-py3-none-any.whl (12.8 kB view details)

Uploaded Python 3

File details

Details for the file any_llm_client-1.2.0.tar.gz.

File metadata

  • Download URL: any_llm_client-1.2.0.tar.gz
  • Upload date:
  • Size: 13.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.5.4

File hashes

Hashes for any_llm_client-1.2.0.tar.gz
Algorithm Hash digest
SHA256 daf95c9ddae901c08038ddf4b9f40ab96ac574c5c1d49ef5123d3f2c119013e7
MD5 700d46d002e90bcd62f5fbf832965246
BLAKE2b-256 e542bd6f24cf1e4a08a41446686244aa62bececb4bccaaa2d0625b61a0a699fc

See more details on using hashes here.

File details

Details for the file any_llm_client-1.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for any_llm_client-1.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ca66614d7c790f01a14294662fcb0bc5a73976d484304a00a6717636a74c2f86
MD5 891600cad14a42315d2851f41c142246
BLAKE2b-256 42c439d02c16f5d1f09c58e2878dd9583b2343f53d10dea451ba57b2baa3e2eb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page