Dynamic dispatch for object serialization
Project description
Here’s a little library that makes it easy to perform dynamic dispatch for multiple object serializers.
Overview
Features
Developed on Python 3.7 (and requires 3.7+, sorry not sorry.)
Tested-ish with ~90% code coverage.
You can create as many custom encoders as you want (as long as the number of encoders you want is 128 or less.)
Types are associated with encoders via a registry or object attribute inspection.
Getting Started
Install the package:
pip install anyencoder
Encode a list:
>>> import anyencoder
>>> letters = ['a', 'b', 'c']
>>> anyencoder.encode(letters)
b'\x05\x80\x00\x00\x01\x80\x04\x95\x11\x00\x00\x00\x00\x00\x00\x00]\x94(\x8c\x01a\x94\x8c\x01b\x94\x8c\x01c\x94e.'
Absent other parameters or method calls, the default encoder is used – probably pickle. I realize this isn’t terribly useful. Let’s dig deeper.
Types
Builtin Types
Instantiate DynamicEncoder and register a TypeTag specifying that list should be serialized using msgpack:
>>> from anyencoder import DynamicEncoder, TypeTag
>>> type_tag = TypeTag(type_=list, evaluator=lambda _: 'msgpack')
>>> letters = ['a', 'b', 'c']
>>> encoder = DynamicEncoder()
>>> encoder.load_encoder_plugins()
>>> encoder.register(type_tag)
>>> encoder.encode(letters)
b'\x05\x83\x00\x00\x01\x93\xa1a\xa1b\xa1c'
Types are associated with an evaluator. The evaluator is called against the object being serialized. This can be used to inspect the object and choose the encoding scheme dynamically:
>>> from anyencoder import DynamicEncoder, TypeTag
>>> def i_care_about_keys(obj):
... """
... If all the keys in the dictionary are strings, I want
... to store the dictionary as msgpack. Otherwise, I want to
... store it as bson. For some reason.
... """
... if all(map(lambda x: isinstance(x, str), obj.keys())):
... return 'msgpack'
... else:
... return 'bson'
...
>>> dict_tag = TypeTag(dict, i_care_about_keys)
>>> str_dict = dict(a=1, b=2, c=3)
>>> int_dict = {1: 'a', 2: 'b', 3: 'c'}
>>> encoder = DynamicEncoder()
>>> encoder.load_encoder_plugins()
>>> encoder.register(dict_tag)
>>> encoder.encode(str_dict)
b'\x05\x83\x00\x00\x01\x83\xa1a\x01\xa1b\x02\xa1c\x03'
>>> encoder.encode(int_dict)
b'\x05\x88\x00\x00\x01 \x00\x00\x00\x021\x00\x02\x00\x00\x00a\x00\x022\x00\x02\x00\x00\x00b\x00\x023\x00\x02\x00\x00\x00c\x00\x00'
Custom Types
Classes can implement a method to specify how they should be serialized. The method should return the name of the desired encoder:
>>> from anyencoder import DynamicEncoder
>>> class MyClass:
... z = False
...
... def _encoder_id(self):
... if self.z:
... return 'cloudpickle'
... else:
... return 'dill'
>>> my_cls = MyClass()
... with DynamicEncoder() as encoder:
... with_z_false = encoder.encode(my_cls)
... my_cls.z = True
... with_z_true = encoder.encode(my_cls)
...
>>> with_z_false
b'\x05\x81\x00\x00\x01\x80\x04\x95\xa8\x00\x00\x00\x00\x00\x00\x00\x8c\ndill._dill\x94\x8c\x0c_create_type\x94\x93\x94(h\x00\x8c\n_load_type\x94\x93\x94\x8c\tClassType\x94\x85\x94R\x94\x8c\x07MyClass\x94h\x04\x8c\x06object\x94\x85\x94R\x94\x85\x94}\x94(\x8c\n__module__\x94\x8c\x08__main__\x94\x8c\x01z\x94\x89\x8c\x07__doc__\x94N\x8c\r__slotnames__\x94]\x94ut\x94R\x94)\x81\x94}\x94h\x10\x89sb.'
>>> with_z_true
b'\x05\x82\x00\x00\x01\x80\x04\x95\xb8\x00\x00\x00\x00\x00\x00\x00\x8c\x17cloudpickle.cloudpickle\x94\x8c\x19_rehydrate_skeleton_class\x94\x93\x94(\x8c\x08builtins\x94\x8c\x04type\x94\x93\x94\x8c\x07MyClass\x94h\x03\x8c\x06object\x94\x93\x94\x85\x94}\x94\x8c\x07__doc__\x94Ns\x87\x94R\x94}\x94(\x8c\n__module__\x94\x8c\x08__main__\x94\x8c\x01z\x94\x89\x8c\r__slotnames__\x94]\x94utR)\x81\x94}\x94h\x11\x88sb.'
This doesn’t have to be a method; an attribute named encoder_id will also work.
If that sounds like too much work for you, try the encode_with decorator:
>>> from anyencoder import DynamicEncoder, encode_with
>>> @encode_with('dill')
... class MyClass:
... pass
...
... my_cls = MyClass()
... with DynamicEncoder() as encoder:
... encoded = encoder.encode(my_cls)
...
>>> encoded
b'\x05\x81\x00\x00\x01\x80\x04\x95\xb1\x00\x00\x00\x00\x00\x00\x00\x8c\ndill._dill\x94\x8c\x0c_create_type\x94\x93\x94(h\x00\x8c\n_load_type\x94\x93\x94\x8c\tClassType\x94\x85\x94R\x94\x8c\x07MyClass\x94h\x04\x8c\x06object\x94\x85\x94R\x94\x85\x94}\x94(\x8c\n__module__\x94\x8c\x08__main__\x94\x8c\x07__doc__\x94N\x8c\x0b_encoder_id\x94\x8c\x04dill\x94\x8c\r__slotnames__\x94]\x94ut\x94R\x94)\x81\x94.'
Rather than implementing methods, classes can be registered like any other type:
>>> from anyencoder import DynamicEncoder, TypeTag
>>> def evaluate_class(obj):
... return 'cloudpickle' if obj.z else 'dill'
...
>>> class MyClass:
... z = False
...
>>> type_tag = TypeTag(MyClass, evaluate_class)
>>> my_cls = MyClass()
>>> encoder = DynamicEncoder()
>>> encoder.load_encoder_plugins()
>>> encoder.register(type_tag)
>>> encoder.encode(my_cls)
b'\x05\x81\x00\x00\x01\x80\x04\x95\xa8\x00\x00\x00\x00\x00\x00\x00\x8c\ndill._dill < SNIP >
>>> my_cls.z = True
>>> encoder.encode(my_cls)
b'\x05\x82\x00\x00\x01\x80\x04\x95\xb8\x00\x00\x00\x00\x00\x00\x00\x8c\x17cloudpickle.cloudpickle < SNIP >
Encoders
Builtin Encoders
Several pre-built encoders are included:
bson
bzip2
cloudpickle
dill
gzip
json
msgpack
orjson
pickle
strbyte
ujson
zlib
Custom Encoders
Custom encoders can be defined and registered for use. To create a custom encoder, subclass AbstractEncoder:
>>> from anyencoder import DynamicEncoder, TypeTag, AbstractEncoder, EncoderTag
>>> class StrToUtf16(AbstractEncoder):
... encoder_id = 10
...
... def encode(self, obj):
... return obj.encode('utf-16')
...
... def decode(self, data):
... return data.decode('utf-16')
...
>>> my_encoder = StrToUtf16()
>>> encoder_tag = EncoderTag('str-to-utf-16', my_encoder)
>>> encoder.register(encoder_tag)
>>> encoder.register(type_tag)
>>> encoder.encode('hello world')
b'\x05\n\x00\x00\x01\xff\xfeh\x00e\x00l\x00l\x00o\x00 \x00w\x00o\x00r\x00l\x00d\x00'
Note
By now you may have noticed that there’s some extra data included in these outputs. More on that later.
Considerations for Custom Encoders
They must subclass AbstractEncoder and override AbstractEncoder.encode and AbstractEncoder.decode.
The encode method must return a str or bytes object.
Encoders must have a unique encoder_id. This should be an integer 0 <= encoder_id <= 127. If you find you need more than 128 custom encoders, well, that’s just crazy talk.
Encoders must be added to the registry and named by being wrapped in a EncoderTag object.
Proxying Encoders
The AbstractEncoder class has a built-in proxy pattern which can be utilized to build a proxy ‘stack’ of encoders in order to perform logging, inspection, and multi-step object manipulation:
>>> from anyencoder import DynamicEncoder, EncoderTag, TypeTag
>>> from anyencoder.plugins.zlib import ZlibEncoder
>>> from anyencoder.plugins.strbyte import StrByteEncoder
>>> from anyencoder.plugins.ujson import UJsonEncoder
>>> zlib = ZlibEncoder()
>>> strbyte = StrByteEncoder(proxy_to=zlib)
>>> json_zlib = UJsonEncoder(encoder_id=1, proxy_to=strbyte)
>>> encoder_tag = EncoderTag('json-zlib', json_zlib)
>>> type_tag = TypeTag(dict, lambda _: 'json-zlib')
>>> data = dict(a=1, b=2, c=3)
>>> with DynamicEncoder() as encoder:
... encoder.register([encoder_tag, type_tag])
... result = encoder.encode(data)
...
>>> result
b'\x05\x01\x00\x00\x01x\x9c\xabVJT\xb22\xd4QJR\xb22\xd2QJV\xb22\xae\x05\x00-=\x04\x87'
Considerations for Proxying Encoders
When building a proxy stack, the encoder_id is only relevant for the bottom (first) encoder in the stack. The proxy stack counts as a single encoder, and the first encoder in the stack needs a unique encoder_id. The encoder_id can be passed as an argument to facilitate easily re-using existing classes in proxy stacks.
A proxy ‘stack’ is itself registered as a unique encoder with a unique encoder_id. Think of the whole stack as a single encoder. As with other encoders, a proxy stack’s encode method must return either bytes or str data. However, individual encoders in the stack needn’t do anything to manipulate data at all, as long as the stacks’s encode method provides data and decode method can do something with that data.
This allows you to do other useful things with indivudal encoders in the stack, such as implementing callbacks, logging, heuristics, object inspection, etc…
Encoder Plugin Loading
Several pre-baked encoder plugins are included, and are loaded by the load_encoder_plugins method. This method is called automatically when DynamicEncoder’s context manager is invoked:
>>> from pprint import pprint
>>> from anyencoder import DynamicEncoder
>>> with DynamicEncoder() as encoder:
... types, encoders = encoder.registry.dump()
...
>>> pprint(encoders)
[EncoderTag(name='bson',encoder=BSONEncoder(encode_kwargs={},decode_kwargs={}, encoder_id=136,proxy_to=None)),
EncoderTag(name='bzip2',encoder=Bzip2Encoder(encode_kwargs={},decode_kwargs={}, encoder_id=137,proxy_to=None)),
EncoderTag(name='cloudpickle',encoder=CloudPickleEncoder(encode_kwargs={}, decode_kwargs={},encoder_id=130,proxy_to=None)),
EncoderTag(name='dill',encoder=DillEncoder(encode_kwargs={'protocol': 4}, decode_kwargs={},encoder_id=129,proxy_to=None)),
EncoderTag(name='gzip',encoder=GzipEncoder(encode_kwargs={},decode_kwargs={}, encoder_id=144,proxy_to=None)),
EncoderTag(name='json',encoder=JSONEncoder(encode_kwargs={},decode_kwargs={}, encoder_id=133,proxy_to=None)),
EncoderTag(name='msgpack',encoder=MessagePackEncoder(encode_kwargs={'use_bin_type': True},decode_kwargs={'raw': False},encoder_id=131,proxy_to=None)),
EncoderTag(name='orjson',encoder=OrJsonEncoder(encode_kwargs={},decode_kwargs={},encoder_id=134,proxy_to=None)),
EncoderTag(name='pickle',encoder=PickleEncoder(encode_kwargs={'protocol': 4},decode_kwargs={},encoder_id=128,proxy_to=None)),
EncoderTag(name='strbyte',encoder=StrByteEncoder(encode_kwargs={},decode_kwargs={},encoder_id=132,proxy_to=None)),
EncoderTag(name='ujson',encoder=UJsonEncoder(encode_kwargs={},decode_kwargs={},encoder_id=135,proxy_to=None)),
EncoderTag(name='zlib',encoder=ZlibEncoder(encode_kwargs={},decode_kwargs={},encoder_id=145,proxy_to=None))]
Note
Several of the plugins require third-party libraries in order to function.
How It Works
Labels
After object encoding, anyencoder prepends a label to the data. At decode time, the label is removed and read in order to determine how to decode the data.
For binary data, the label is 5 bytes in length: label_len|encoder_id|version_major|version_minor|version_micro
For text data, the label is a small JSON dictionary.
Warning
Because the data is modified to include the label, it must be decoded with anyencoder in order to extract the label. Serializing an object with anyencoder and then trying to decode the result with the concrete serializer is guaranteed to fail.
Encoder IDs
Because encoder_id is limited to a single byte, it must be a value between 0 and 255. Values 128 through 255 are reserved for the library, and therefore you should choose a value where 0 <= value <= 127 when choosing the encoder_id for a custom encoder.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.