Package to compute features of traces from action potential models
Project description
Action Potential features
ap_features
is package for computing features of action potential traces. This includes chopping, background correction and feature calculations.
Parts of this library is written in C
and numba
and is therefore highly performant. This is useful if you want to do feature calculations on a large number of traces.
Install
Install the package with pip
python -m pip install ap_features
See installation instructions for more options.
Available features
The list of currently implemented features are as follows
- Action potential duration (APD)
- Corrected action potential duration (cAPD)
- Decay time (Time for the signal amplitude to go from maxium to (1 - a) * 100 % of maximum)
- Time to peak (ttp)
- Upstrok time (time from (1-a)*100 % signal amplitude to peak)
- Beating frequency
- APD up (The duration between first intersections of two APD lines)
- Maximum relative upstroke velocity
- Maximum upstroke velocity
- APD integral (integral of the signals above the APD line)
Documentation
Documentation is hosted at GitHub pages: https://computationalphysiology.github.io/ap_features/
Note that the documentation is written using jupyterbook
and contains an interactive demo
License
- Free software: GNU General Public License v3
Source Code
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for ap_features-2022.3.0-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a2fa46c312dfe7f3363c31a2866d9691d4e52d53c807f3c10633f7db438ca6b5 |
|
MD5 | b990b03fdcf4bdc3634afca7dd26152d |
|
BLAKE2b-256 | de8b60e5132ed465d602bac966fea1a4849842e78af07ba682d95ed1c67dbc81 |
Hashes for ap_features-2022.3.0-cp37-cp37m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 98c15a66c0b84b81d00c8f6385069889c5d6f8ba9e1133fffce5087bd266060e |
|
MD5 | d093452b5b710fd97c6961eb7977ea68 |
|
BLAKE2b-256 | 99eaa101a3124e0487754a4cc168351d2d7b8fb50fa64da23ad4a583d0b59e41 |
Hashes for ap_features-2022.3.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 220e65aac938ab73c88d46e7aaefa910b373d12edebfbe1919c035e0c16e2ac0 |
|
MD5 | 30191999bda9c3342c7371e9a53d14e1 |
|
BLAKE2b-256 | 0e304bbfabf5225b9d3103f2de7425b37dac3e1e3443efd9f911e44c8414ae43 |
Hashes for ap_features-2022.3.0-cp37-cp37m-manylinux2010_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3f28463e17b82fc28edd957821d338e3ab380ee909dd9be87a6b5c79ae1d9e64 |
|
MD5 | c2d815ba1413af5f6365bedc64608107 |
|
BLAKE2b-256 | 38a3852c2bda5319c2c2fde47e6bd30269bb24df025b89e63e178c7960e32c03 |
Hashes for ap_features-2022.3.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6f39e6c1e22d647155d99939794bd869deca071ca0d458ecdd090fee9d1fc984 |
|
MD5 | 7c87ac86a13f18567915f2ec554f32aa |
|
BLAKE2b-256 | b040d274833a91ee3f237c1d3a6fb230d95a94b5654bed604299d4f7e6427ea2 |
Hashes for ap_features-2022.3.0-cp37-cp37m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 556338d3358016181b78f440f3dd69160f4cb051cb99a5fc70ef9f449418b0a8 |
|
MD5 | b089aa9ecf4d601ff797b1293e43ddff |
|
BLAKE2b-256 | 4f112d7d555312cf974918610d32331e3a3d9a7b547072e59b2050fdcd9ea32d |
Hashes for ap_features-2022.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7a8854608c4f9f2a5f181099d2db31d2296d36dbf524c68e34701b2694f9fc09 |
|
MD5 | b04ba728bd00e2e68d71ccfcbe130c95 |
|
BLAKE2b-256 | 8c4ba4bea8f18fe25bf42ddce9badbfe71b3de64af47b35829110f56bd01d248 |