Skip to main content

Provider package apache-airflow-providers-google for Apache Airflow

Project description

Package apache-airflow-providers-google

Release: 6.0.0

Google services including:

Provider package

This is a provider package for google provider. All classes for this provider package are in airflow.providers.google python package.

You can find package information and changelog for the provider in the documentation.

Installation

You can install this package on top of an existing airflow 2.1+ installation via pip install apache-airflow-providers-google

The package supports the following python versions: 3.6,3.7,3.8,3.9

PIP requirements

PIP package Version required
apache-airflow >=2.1.0
PyOpenSSL  
google-ads >=12.0.0
google-api-core >=1.25.1,<3.0.0
google-api-python-client >=1.6.0,<2.0.0
google-auth-httplib2 >=0.0.1
google-auth >=1.0.0,<3.0.0
google-cloud-automl >=2.1.0,<3.0.0
google-cloud-bigquery-datatransfer >=3.0.0,<4.0.0
google-cloud-bigtable >=1.0.0,<2.0.0
google-cloud-build >=3.0.0,<4.0.0
google-cloud-container >=0.1.1,<2.0.0
google-cloud-datacatalog >=3.0.0,<4.0.0
google-cloud-dataproc >=2.2.0,<2.6.0
google-cloud-dlp >=0.11.0,<2.0.0
google-cloud-kms >=2.0.0,<3.0.0
google-cloud-language >=1.1.1,<2.0.0
google-cloud-logging >=2.1.1,<3.0.0
google-cloud-memcache >=0.2.0,<1.1.0
google-cloud-monitoring >=2.0.0,<3.0.0
google-cloud-os-login >=2.0.0,<3.0.0
google-cloud-pubsub >=2.0.0,<3.0.0
google-cloud-redis >=2.0.0,<3.0.0
google-cloud-secret-manager >=0.2.0,<2.0.0
google-cloud-spanner >=1.10.0,<2.0.0
google-cloud-speech >=0.36.3,<2.0.0
google-cloud-storage >=1.30,<2.0.0
google-cloud-tasks >=2.0.0,<3.0.0
google-cloud-texttospeech >=0.4.0,<2.0.0
google-cloud-translate >=1.5.0,<2.0.0
google-cloud-videointelligence >=1.7.0,<2.0.0
google-cloud-vision >=0.35.2,<2.0.0
google-cloud-workflows >=0.1.0,<2.0.0
grpcio-gcp >=0.2.2
httpx  
json-merge-patch ~=0.2
pandas-gbq <0.15.0

Cross provider package dependencies

Those are dependencies that might be needed in order to use all the features of the package. You need to install the specified provider packages in order to use them.

You can install such cross-provider dependencies when installing from PyPI. For example:

pip install apache-airflow-providers-google[amazon]
Dependent package Extra
apache-airflow-providers-amazon amazon
apache-airflow-providers-apache-beam apache.beam
apache-airflow-providers-apache-cassandra apache.cassandra
apache-airflow-providers-cncf-kubernetes cncf.kubernetes
apache-airflow-providers-facebook facebook
apache-airflow-providers-microsoft-azure microsoft.azure
apache-airflow-providers-microsoft-mssql microsoft.mssql
apache-airflow-providers-mysql mysql
apache-airflow-providers-oracle oracle
apache-airflow-providers-postgres postgres
apache-airflow-providers-presto presto
apache-airflow-providers-salesforce salesforce
apache-airflow-providers-sftp sftp
apache-airflow-providers-ssh ssh
apache-airflow-providers-trino trino

Changelog

6.0.0

Breaking changes

  • Migrate Google Cloud Build from Discovery API to Python SDK (#18184)

Features

  • Add index to the dataset name to have separate dataset for each example DAG (#18459)
  • Add missing __init__.py files for some test packages (#18142)
  • Add possibility to run DAGs from system tests and see DAGs logs (#17868)
  • Rename AzureDataLakeStorage to ADLS (#18493)
  • Make next_dagrun_info take a data interval (#18088)
  • Use parameters instead of params (#18143)
  • New google operator: SQLToGoogleSheetsOperator (#17887)

Bug Fixes

  • Fix part of Google system tests (#18494)
  • Fix kubernetes engine system test (#18548)
  • Fix BigQuery system test (#18373)
  • Fix error when create external table using table resource (#17998)
  • Fix ''BigQuery'' data extraction in ''BigQueryToMySqlOperator'' (#18073)
  • Fix providers tests in main branch with eager upgrades (#18040)
  • fix(CloudSqlProxyRunner): don't query connections from Airflow DB (#18006)
  • Remove check for at least one schema in GCSToBigquery (#18150)
  • deduplicate running jobs on BigQueryInsertJobOperator (#17496)

5.1.0

Features

  • Add error check for config_file parameter in GKEStartPodOperator (#17700)
  • Gcp ai hyperparameter tuning (#17790)
  • Allow omission of 'initial_node_count' if 'node_pools' is specified (#17820)
  • [Airflow 13779] use provided parameters in the wait_for_pipeline_state hook (#17137)
  • Enable specifying dictionary paths in 'template_fields_renderers' (#17321)
  • Don't cache Google Secret Manager client (#17539)
  • [AIRFLOW-9300] Add DatafusionPipelineStateSensor and aync option to the CloudDataFusionStartPipelineOperator (#17787)

Bug Fixes

  • GCP Secret Manager error handling for missing credentials (#17264)

Misc

  • Optimise connection importing for Airflow 2.2.0
  • Adds secrets backend/logging/auth information to provider yaml (#17625)

5.0.0

Breaking changes

  • Updated GoogleAdsHook to support newer API versions after google deprecated v5. Google Ads v8 is the new default API. (#17111)
  • Google Ads Hook: Support newer versions of the google-ads library (#17160)

Warning

The underlying google-ads library had breaking changes.

Previously the google ads library returned data as native protobuf messages. Now it returns data as proto-plus objects that behave more like conventional Python objects.

To preserve compatibility the hook’s search() converts the data back to native protobuf before returning it. Your existing operators should work as before, but due to the urgency of the v5 API being deprecated it was not tested too thoroughly. Therefore you should carefully evaluate your operator and hook functionality with this new version.

In order to use the API’s new proto-plus format, you can use the search_proto_plus() method.

For more information, please consult google-ads migration document:

Features

  • Standardise dataproc location param to region (#16034)
  • Adding custom Salesforce connection type + SalesforceToS3Operator updates (#17162)

Bug Fixes

  • Update alias for field_mask in Google Memmcache (#16975)
  • fix: dataprocpysparkjob project_id as self.project_id (#17075)
  • Fix GCStoGCS operator with replace diabled and existing destination object (#16991)

4.0.0

Breaking changes

  • Auto-apply apply_default decorator (#15667)

Warning

Due to apply_default decorator removal, this version of the provider requires Airflow 2.1.0+. If your Airflow version is < 2.1.0, and you want to install this provider version, first upgrade Airflow to at least version 2.1.0. Otherwise your Airflow package version will be upgraded automatically and you will have to manually run airflow upgrade db to complete the migration.

  • Move plyvel to google provider extra (#15812)
  • Fixes AzureFileShare connection extras (#16388)

Features

  • Add extra links for google dataproc (#10343)
  • add oracle  connection link (#15632)
  • pass wait_for_done parameter down to _DataflowJobsController (#15541)
  • Use api version only in GoogleAdsHook not operators (#15266)
  • Implement BigQuery Table Schema Update Operator (#15367)
  • Add BigQueryToMsSqlOperator (#15422)

Bug Fixes

  • Fix: GCS To BigQuery source_object (#16160)
  • Fix: Unnecessary downloads in ``GCSToLocalFilesystemOperator (#16171)``
  • Fix bigquery type error when export format is parquet (#16027)
  • Fix argument ordering and type of bucket and object (#15738)
  • Fix sql_to_gcs docstring lint error (#15730)
  • fix: ensure datetime-related values fully compatible with MySQL and BigQuery (#15026)
  • Fix deprecation warnings location in google provider (#16403)

3.0.0

Breaking changes

Change in AutoMLPredictOperator

The params parameter in airflow.providers.google.cloud.operators.automl.AutoMLPredictOperator class was renamed operation_params because it conflicted with a param parameter in the BaseOperator class.

Integration with the apache.beam provider

In 3.0.0 version of the provider we’ve changed the way of integrating with the apache.beam provider. The previous versions of both providers caused conflicts when trying to install them together using PIP > 20.2.4. The conflict is not detected by PIP 20.2.4 and below but it was there and the version of Google BigQuery python client was not matching on both sides. As the result, when both apache.beam and google provider were installed, some features of the BigQuery operators might not work properly. This was cause by apache-beam client not yet supporting the new google python clients when apache-beam[gcp] extra was used. The apache-beam[gcp] extra is used by Dataflow operators and while they might work with the newer version of the Google BigQuery python client, it is not guaranteed.

This version introduces additional extra requirement for the apache.beam extra of the google provider and symmetrically the additional requirement for the google extra of the apache.beam provider. Both google and apache.beam provider do not use those extras by default, but you can specify them when installing the providers. The consequence of that is that some functionality of the Dataflow operators might not be available.

Unfortunately the only complete solution to the problem is for the apache.beam to migrate to the new (>=2.0.0) Google Python clients.

This is the extra for the google provider:

extras_require = (
    {
        # ...
        "apache.beam": ["apache-airflow-providers-apache-beam", "apache-beam[gcp]"],
        # ...
    },
)

And likewise this is the extra for the apache.beam provider:

extras_require = ({"google": ["apache-airflow-providers-google", "apache-beam[gcp]"]},)

You can still run this with PIP version <= 20.2.4 and go back to the previous behaviour:

pip install apache-airflow-providers-google[apache.beam]

or

pip install apache-airflow-providers-apache-beam[google]

But be aware that some BigQuery operators functionality might not be available in this case.

Features

  • [Airflow-15245] - passing custom image family name to the DataProcClusterCreateoperator (#15250)

Bug Fixes

  • Bugfix: Fix rendering of ''object_name'' in ''GCSToLocalFilesystemOperator'' (#15487)
  • Fix typo in DataprocCreateClusterOperator (#15462)
  • Fixes wrongly specified path for leveldb hook (#15453)

2.2.0

Features

  • Adds 'Trino' provider (with lower memory footprint for tests) (#15187)
  • update remaining old import paths of operators (#15127)
  • Override project in dataprocSubmitJobOperator (#14981)
  • GCS to BigQuery Transfer Operator with Labels and Description parameter (#14881)
  • Add GCS timespan transform operator (#13996)
  • Add job labels to bigquery check operators. (#14685)
  • Use libyaml C library when available. (#14577)
  • Add Google leveldb hook and operator (#13109) (#14105)

Bug fixes

  • Google Dataflow Hook to handle no Job Type (#14914)

2.1.0

Features

  • Corrects order of argument in docstring in GCSHook.download method (#14497)
  • Refactor SQL/BigQuery/Qubole/Druid Check operators (#12677)
  • Add GoogleDriveToLocalOperator (#14191)
  • Add 'exists_ok' flag to BigQueryCreateEmptyTable(Dataset)Operator (#14026)
  • Add materialized view support for BigQuery (#14201)
  • Add BigQueryUpdateTableOperator (#14149)
  • Add param to CloudDataTransferServiceOperator (#14118)
  • Add gdrive_to_gcs operator, drive sensor, additional functionality to drive hook  (#13982)
  • Improve GCSToSFTPOperator paths handling (#11284)

Bug Fixes

  • Fixes to dataproc operators and hook (#14086)
  • #9803 fix bug in copy operation without wildcard  (#13919)

2.0.0

Breaking changes

Updated google-cloud-* libraries

This release of the provider package contains third-party library updates, which may require updating your DAG files or custom hooks and operators, if you were using objects from those libraries. Updating of these libraries is necessary to be able to use new features made available by new versions of the libraries and to obtain bug fixes that are only available for new versions of the library.

Details are covered in the UPDATING.md files for each library, but there are some details that you should pay attention to.

Library name Previous constraints Current constraints Upgrade Documentation
google-cloud-automl >=0.4.0,<2.0.0 >=2.1.0,<3.0.0 Upgrading google-cloud-automl
google-cloud-bigquery-datatransfer >=0.4.0,<2.0.0 >=3.0.0,<4.0.0 Upgrading google-cloud-bigquery-datatransfer
google-cloud-datacatalog >=0.5.0,<0.8 >=3.0.0,<4.0.0 Upgrading google-cloud-datacatalog
google-cloud-dataproc >=1.0.1,<2.0.0 >=2.2.0,<3.0.0 Upgrading google-cloud-dataproc
google-cloud-kms >=1.2.1,<2.0.0 >=2.0.0,<3.0.0 Upgrading google-cloud-kms
google-cloud-logging >=1.14.0,<2.0.0 >=2.0.0,<3.0.0 Upgrading google-cloud-logging
google-cloud-monitoring >=0.34.0,<2.0.0 >=2.0.0,<3.0.0 Upgrading google-cloud-monitoring
google-cloud-os-login >=1.0.0,<2.0.0 >=2.0.0,<3.0.0 Upgrading google-cloud-os-login
google-cloud-pubsub >=1.0.0,<2.0.0 >=2.0.0,<3.0.0 Upgrading google-cloud-pubsub
google-cloud-tasks >=1.2.1,<2.0.0 >=2.0.0,<3.0.0 Upgrading google-cloud-task
The field names use the snake_case convention

If your DAG uses an object from the above mentioned libraries passed by XCom, it is necessary to update the naming convention of the fields that are read. Previously, the fields used the CamelSnake convention, now the snake_case convention is used.

Before:

set_acl_permission = GCSBucketCreateAclEntryOperator(
    task_id="gcs-set-acl-permission",
    bucket=BUCKET_NAME,
    entity="user-{{ task_instance.xcom_pull('get-instance')['persistenceIamIdentity']"
    ".split(':', 2)[1] }}",
    role="OWNER",
)

After:

set_acl_permission = GCSBucketCreateAclEntryOperator(
    task_id="gcs-set-acl-permission",
    bucket=BUCKET_NAME,
    entity="user-{{ task_instance.xcom_pull('get-instance')['persistence_iam_identity']"
    ".split(':', 2)[1] }}",
    role="OWNER",
)

Features

  • Add Apache Beam operators (#12814)
  • Add Google Cloud Workflows Operators (#13366)
  • Replace 'google_cloud_storage_conn_id' by 'gcp_conn_id' when using 'GCSHook' (#13851)
  • Add How To Guide for Dataflow (#13461)
  • Generalize MLEngineStartTrainingJobOperator to custom images (#13318)
  • Add Parquet data type to BaseSQLToGCSOperator (#13359)
  • Add DataprocCreateWorkflowTemplateOperator (#13338)
  • Add OracleToGCS Transfer (#13246)
  • Add timeout option to gcs hook methods. (#13156)
  • Add regional support to dataproc workflow template operators (#12907)
  • Add project_id to client inside BigQuery hook update_table method (#13018)

Bug fixes

  • Fix four bugs in StackdriverTaskHandler (#13784)
  • Decode Remote Google Logs (#13115)
  • Fix and improve GCP BigTable hook and system test (#13896)
  • updated Google DV360 Hook to fix SDF issue (#13703)
  • Fix insert_all method of BigQueryHook to support tables without schema (#13138)
  • Fix Google BigQueryHook method get_schema() (#13136)
  • Fix Data Catalog operators (#13096)

1.0.0

Initial version of the provider.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for apache-airflow-providers-google, version 6.0.0
Filename, size File type Python version Upload date Hashes
Filename, size apache_airflow_providers_google-6.0.0-py3-none-any.whl (738.9 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size apache-airflow-providers-google-6.0.0.tar.gz (475.3 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page