Apache IoTDB client API
Project description
Apache IoTDB
Apache IoTDB (Database for Internet of Things) is an IoT native database with high performance for data management and analysis, deployable on the edge and the cloud. Due to its light-weight architecture, high performance and rich feature set together with its deep integration with Apache Hadoop, Spark and Flink, Apache IoTDB can meet the requirements of massive data storage, high-speed data ingestion and complex data analysis in the IoT industrial fields.
Python Native API
Requirements
You have to install thrift (>=0.13) before using the package.
How to use (Example)
First, download the latest package: pip3 install apache-iotdb
Notice: If you are installing Python API v0.13.0, DO NOT install by pip install apache-iotdb==0.13.0
, use pip install apache-iotdb==0.13.0.post1
instead!
You can get an example of using the package to read and write data at here: Example
An example of aligned timeseries: Aligned Timeseries Session Example
(you need to add import iotdb
in the head of the file)
Or:
from iotdb.Session import Session
ip = "127.0.0.1"
port_ = "6667"
username_ = "root"
password_ = "root"
session = Session(ip, port_, username_, password_)
session.open(False)
zone = session.get_time_zone()
session.close()
Initialization
- Initialize a Session
session = Session(ip, port_, username_, password_, fetch_size=1024, zone_id="UTC+8")
- Open a session, with a parameter to specify whether to enable RPC compression
session.open(enable_rpc_compression=False)
Notice: this RPC compression status of client must comply with that of IoTDB server
- Close a Session
session.close()
Data Definition Interface (DDL Interface)
DATABASE Management
- CREATE DATABASE
session.set_storage_group(group_name)
- Delete one or several databases
session.delete_storage_group(group_name)
session.delete_storage_groups(group_name_lst)
Timeseries Management
- Create one or multiple timeseries
session.create_time_series(ts_path, data_type, encoding, compressor,
props=None, tags=None, attributes=None, alias=None)
session.create_multi_time_series(
ts_path_lst, data_type_lst, encoding_lst, compressor_lst,
props_lst=None, tags_lst=None, attributes_lst=None, alias_lst=None
)
- Create aligned timeseries
session.create_aligned_time_series(
device_id, measurements_lst, data_type_lst, encoding_lst, compressor_lst
)
Attention: Alias of measurements are not supported currently.
- Delete one or several timeseries
session.delete_time_series(paths_list)
- Check whether the specific timeseries exists
session.check_time_series_exists(path)
Data Manipulation Interface (DML Interface)
Insert
It is recommended to use insertTablet to help improve write efficiency.
- Insert a Tablet,which is multiple rows of a device, each row has the same measurements
- Better Write Performance
- Support null values: fill the null value with any value, and then mark the null value via BitMap (from v0.13)
We have two implementations of Tablet in Python API.
- Normal Tablet
values_ = [
[False, 10, 11, 1.1, 10011.1, "test01"],
[True, 100, 11111, 1.25, 101.0, "test02"],
[False, 100, 1, 188.1, 688.25, "test03"],
[True, 0, 0, 0, 6.25, "test04"],
]
timestamps_ = [1, 2, 3, 4]
tablet_ = Tablet(
device_id, measurements_, data_types_, values_, timestamps_
)
session.insert_tablet(tablet_)
values_ = [
[None, 10, 11, 1.1, 10011.1, "test01"],
[True, None, 11111, 1.25, 101.0, "test02"],
[False, 100, None, 188.1, 688.25, "test03"],
[True, 0, 0, 0, None, None],
]
timestamps_ = [16, 17, 18, 19]
tablet_ = Tablet(
device_id, measurements_, data_types_, values_, timestamps_
)
session.insert_tablet(tablet_)
- Numpy Tablet
Comparing with Tablet, Numpy Tablet is using numpy.ndarray to record data. With less memory footprint and time cost of serialization, the insert performance will be better.
Notice
- time and value columns in Tablet are ndarray.
- recommended to use the specific dtypes to each ndarray, see the example below (if not, the default dtypes are also ok).
import numpy as np
data_types_ = [
TSDataType.BOOLEAN,
TSDataType.INT32,
TSDataType.INT64,
TSDataType.FLOAT,
TSDataType.DOUBLE,
TSDataType.TEXT,
]
np_values_ = [
np.array([False, True, False, True], TSDataType.BOOLEAN.np_dtype()),
np.array([10, 100, 100, 0], TSDataType.INT32.np_dtype()),
np.array([11, 11111, 1, 0], TSDataType.INT64.np_dtype()),
np.array([1.1, 1.25, 188.1, 0], TSDataType.FLOAT.np_dtype()),
np.array([10011.1, 101.0, 688.25, 6.25], TSDataType.DOUBLE.np_dtype()),
np.array(["test01", "test02", "test03", "test04"], TSDataType.TEXT.np_dtype()),
]
np_timestamps_ = np.array([1, 2, 3, 4], TSDataType.INT64.np_dtype())
np_tablet_ = NumpyTablet(
device_id, measurements_, data_types_, np_values_, np_timestamps_
)
session.insert_tablet(np_tablet_)
# insert one numpy tablet with none into the database.
np_values_ = [
np.array([False, True, False, True], TSDataType.BOOLEAN.np_dtype()),
np.array([10, 100, 100, 0], TSDataType.INT32.np_dtype()),
np.array([11, 11111, 1, 0], TSDataType.INT64.np_dtype()),
np.array([1.1, 1.25, 188.1, 0], TSDataType.FLOAT.np_dtype()),
np.array([10011.1, 101.0, 688.25, 6.25], TSDataType.DOUBLE.np_dtype()),
np.array(["test01", "test02", "test03", "test04"], TSDataType.TEXT.np_dtype()),
]
np_timestamps_ = np.array([98, 99, 100, 101], TSDataType.INT64.np_dtype())
np_bitmaps_ = []
for i in range(len(measurements_)):
np_bitmaps_.append(BitMap(len(np_timestamps_)))
np_bitmaps_[0].mark(0)
np_bitmaps_[1].mark(1)
np_bitmaps_[2].mark(2)
np_bitmaps_[4].mark(3)
np_bitmaps_[5].mark(3)
np_tablet_with_none = NumpyTablet(
device_id, measurements_, data_types_, np_values_, np_timestamps_, np_bitmaps_
)
session.insert_tablet(np_tablet_with_none)
- Insert multiple Tablets
session.insert_tablets(tablet_lst)
- Insert a Record
session.insert_record(device_id, timestamp, measurements_, data_types_, values_)
- Insert multiple Records
session.insert_records(
device_ids_, time_list_, measurements_list_, data_type_list_, values_list_
)
- Insert multiple Records that belong to the same device. With type info the server has no need to do type inference, which leads a better performance
session.insert_records_of_one_device(device_id, time_list, measurements_list, data_types_list, values_list)
Insert with type inference
When the data is of String type, we can use the following interface to perform type inference based on the value of the value itself. For example, if value is "true" , it can be automatically inferred to be a boolean type. If value is "3.2" , it can be automatically inferred as a flout type. Without type information, server has to do type inference, which may cost some time.
- Insert a Record, which contains multiple measurement value of a device at a timestamp
session.insert_str_record(device_id, timestamp, measurements, string_values)
Insert of Aligned Timeseries
The Insert of aligned timeseries uses interfaces like insert_aligned_XXX, and others are similar to the above interfaces:
- insert_aligned_record
- insert_aligned_records
- insert_aligned_records_of_one_device
- insert_aligned_tablet
- insert_aligned_tablets
IoTDB-SQL Interface
- Execute query statement
session.execute_query_statement(sql)
- Execute non query statement
session.execute_non_query_statement(sql)
- Execute statement
session.execute_statement(sql)
Device Template
Create Device Template
The step for creating a metadata template is as follows
- Create the template class
- Adding child Node,InternalNode and MeasurementNode can be chose
- Execute create device template function
template = Template(name=template_name, share_time=True)
i_node_gps = InternalNode(name="GPS", share_time=False)
i_node_v = InternalNode(name="vehicle", share_time=True)
m_node_x = MeasurementNode("x", TSDataType.FLOAT, TSEncoding.RLE, Compressor.SNAPPY)
i_node_gps.add_child(m_node_x)
i_node_v.add_child(m_node_x)
template.add_template(i_node_gps)
template.add_template(i_node_v)
template.add_template(m_node_x)
session.create_schema_template(template)
Modify Device Template nodes
Modify nodes in a template, the template must be already created. These are functions that add or delete some measurement nodes.
- add node in template
session.add_measurements_in_template(template_name, measurements_path, data_types, encodings, compressors, is_aligned)
- delete node in template
session.delete_node_in_template(template_name, path)
Set Device Template
session.set_schema_template(template_name, prefix_path)
Uset Device Template
session.unset_schema_template(template_name, prefix_path)
Show Device Template
- Show all device templates
session.show_all_templates()
- Count all nodes in templates
session.count_measurements_in_template(template_name)
- Judge whether the path is measurement or not in templates, This measurement must be in the template
session.count_measurements_in_template(template_name, path)
- Judge whether the path is exist or not in templates, This path may not belong to the template
session.is_path_exist_in_template(template_name, path)
- Show nodes under in device template
session.show_measurements_in_template(template_name)
- Show the path prefix where a device template is set
session.show_paths_template_set_on(template_name)
- Show the path prefix where a device template is used (i.e. the time series has been created)
session.show_paths_template_using_on(template_name)
Drop Device Template
Delete an existing metadata template,dropping an already set template is not supported
session.drop_schema_template("template_python")
Pandas Support
To easily transform a query result to a Pandas Dataframe
the SessionDataSet has a method .todf()
which consumes the dataset and transforms it to a pandas dataframe.
Example:
from iotdb.Session import Session
ip = "127.0.0.1"
port_ = "6667"
username_ = "root"
password_ = "root"
session = Session(ip, port_, username_, password_)
session.open(False)
result = session.execute_query_statement("SELECT * FROM root.*")
# Transform to Pandas Dataset
df = result.todf()
session.close()
# Now you can work with the dataframe
df = ...
IoTDB Testcontainer
The Test Support is based on the lib testcontainers
(https://testcontainers-python.readthedocs.io/en/latest/index.html) which you need to install in your project if you want to use the feature.
To start (and stop) an IoTDB Database in a Docker container simply do:
class MyTestCase(unittest.TestCase):
def test_something(self):
with IoTDBContainer() as c:
session = Session("localhost", c.get_exposed_port(6667), "root", "root")
session.open(False)
result = session.execute_query_statement("SHOW TIMESERIES")
print(result)
session.close()
by default it will load the image apache/iotdb:latest
, if you want a specific version just pass it like e.g. IoTDBContainer("apache/iotdb:0.12.0")
to get version 0.12.0
running.
IoTDB DBAPI
IoTDB DBAPI implements the Python DB API 2.0 specification (https://peps.python.org/pep-0249/), which defines a common interface for accessing databases in Python.
Examples
- Initialization
The initialized parameters are consistent with the session part (except for the sqlalchemy_mode).
from iotdb.dbapi import connect
ip = "127.0.0.1"
port_ = "6667"
username_ = "root"
password_ = "root"
conn = connect(ip, port_, username_, password_,fetch_size=1024,zone_id="UTC+8",sqlalchemy_mode=False)
cursor = conn.cursor()
- simple SQL statement execution
cursor.execute("SELECT * FROM root.*")
for row in cursor.fetchall():
print(row)
- execute SQL with parameter
IoTDB DBAPI supports pyformat style parameters
cursor.execute("SELECT * FROM root.* WHERE time < %(time)s",{"time":"2017-11-01T00:08:00.000"})
for row in cursor.fetchall():
print(row)
- execute SQL with parameter sequences
seq_of_parameters = [
{"timestamp": 1, "temperature": 1},
{"timestamp": 2, "temperature": 2},
{"timestamp": 3, "temperature": 3},
{"timestamp": 4, "temperature": 4},
{"timestamp": 5, "temperature": 5},
]
sql = "insert into root.cursor(timestamp,temperature) values(%(timestamp)s,%(temperature)s)"
cursor.executemany(sql,seq_of_parameters)
- close the connection and cursor
cursor.close()
conn.close()
IoTDB SQLAlchemy Dialect (Experimental)
The SQLAlchemy dialect of IoTDB is written to adapt to Apache Superset. This part is still being improved. Please do not use it in the production environment!
Mapping of the metadata
The data model used by SQLAlchemy is a relational data model, which describes the relationships between different entities through tables. While the data model of IoTDB is a hierarchical data model, which organizes the data through a tree structure. In order to adapt IoTDB to the dialect of SQLAlchemy, the original data model in IoTDB needs to be reorganized. Converting the data model of IoTDB into the data model of SQLAlchemy.
The metadata in the IoTDB are:
- Database
- Path
- Entity
- Measurement
The metadata in the SQLAlchemy are:
- Schema
- Table
- Column
The mapping relationship between them is:
The metadata in the SQLAlchemy | The metadata in the IoTDB |
---|---|
Schema | Database |
Table | Path ( from database to entity ) + Entity |
Column | Measurement |
The following figure shows the relationship between the two more intuitively:
Data type mapping
data type in IoTDB | data type in SQLAlchemy |
---|---|
BOOLEAN | Boolean |
INT32 | Integer |
INT64 | BigInteger |
FLOAT | Float |
DOUBLE | Float |
TEXT | Text |
LONG | BigInteger |
Example
- execute statement
from sqlalchemy import create_engine
engine = create_engine("iotdb://root:root@127.0.0.1:6667")
connect = engine.connect()
result = connect.execute("SELECT ** FROM root")
for row in result.fetchall():
print(row)
- ORM (now only simple queries are supported)
from sqlalchemy import create_engine, Column, Float, BigInteger, MetaData
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
metadata = MetaData(
schema='root.factory'
)
Base = declarative_base(metadata=metadata)
class Device(Base):
__tablename__ = "room2.device1"
Time = Column(BigInteger, primary_key=True)
temperature = Column(Float)
status = Column(Float)
engine = create_engine("iotdb://root:root@127.0.0.1:6667")
DbSession = sessionmaker(bind=engine)
session = DbSession()
res = session.query(Device.status).filter(Device.temperature > 1)
for row in res:
print(row)
Developers
Introduction
This is an example of how to connect to IoTDB with python, using the thrift rpc interfaces. Things are almost the same on Windows or Linux, but pay attention to the difference like path separator.
Prerequisites
Python3.7 or later is preferred.
You have to install Thrift (0.11.0 or later) to compile our thrift file into python code. Below is the official tutorial of installation, eventually, you should have a thrift executable.
http://thrift.apache.org/docs/install/
Before starting you need to install requirements_dev.txt
in your python environment, e.g. by calling
pip install -r requirements_dev.txt
Compile the thrift library and Debug
In the root of IoTDB's source code folder, run mvn clean generate-sources -pl client-py -am
.
This will automatically delete and repopulate the folder iotdb/thrift
with the generated thrift files.
This folder is ignored from git and should never be pushed to git!
Notice Do not upload iotdb/thrift
to the git repo.
Session Client & Example
We packed up the Thrift interface in client-py/src/iotdb/Session.py
(similar with its Java counterpart), also provided an example file client-py/src/SessionExample.py
of how to use the session module. please read it carefully.
Or, another simple example:
from iotdb.Session import Session
ip = "127.0.0.1"
port_ = "6667"
username_ = "root"
password_ = "root"
session = Session(ip, port_, username_, password_)
session.open(False)
zone = session.get_time_zone()
session.close()
Tests
Please add your custom tests in tests
folder.
To run all defined tests just type pytest .
in the root folder.
Notice Some tests need docker to be started on your system as a test instance is started in a docker container using testcontainers.
Futher Tools
black and flake8 are installed for autoformatting and linting.
Both can be run by black .
or flake8 .
respectively.
Releasing
To do a release just ensure that you have the right set of generated thrift files.
Then run linting and auto-formatting.
Then, ensure that all tests work (via pytest .
).
Then you are good to go to do a release!
Preparing your environment
First, install all necessary dev dependencies via pip install -r requirements_dev.txt
.
Doing the Release
There is a convenient script release.sh
to do all steps for a release.
Namely, these are
- Remove all transient directories from last release (if exists)
- (Re-)generate all generated sources via mvn
- Run Linting (flake8)
- Run Tests via pytest
- Build
- Release to pypi
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file apache_iotdb-1.3.2.post0.tar.gz
.
File metadata
- Download URL: apache_iotdb-1.3.2.post0.tar.gz
- Upload date:
- Size: 89.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 249e4e058907e567182a1559bdfdb6e629cec591ae2780533857873c873f9a20 |
|
MD5 | f9793bcfa91f3a3bc7d15b83fa5d9b09 |
|
BLAKE2b-256 | dad14895eca705f20d7a1158771ac25b72703b3a72893ba543c706a9fd286636 |
File details
Details for the file apache_iotdb-1.3.2.post0-py3-none-any.whl
.
File metadata
- Download URL: apache_iotdb-1.3.2.post0-py3-none-any.whl
- Upload date:
- Size: 128.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 30d7b9089ea35cd66977ceff568cebcb313d836d91967bb36212a9f37b069cc7 |
|
MD5 | b54a5d032a7333321d2954d46e8a8032 |
|
BLAKE2b-256 | 9e5ce41b2e1725d91ad7bfd6cc234f0f73df0b02ed202d6b9529be0637685b26 |