Skip to main content

A package for authoring and deploying machine learning workflows

Project description

Apache Liminal

Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way.

The platform provides the abstractions and declarative capabilities for data extraction & feature engineering followed by model training and serving. Liminal's goal is to operationalize the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validation, deployment and inference in production, freeing them from engineering and non-functional tasks, and allowing them to focus on machine learning code and artifacts.

Basics

Using simple YAML configuration, create your own schedule data pipelines (a sequence of tasks to perform), application servers, and more.

Getting Started

A simple getting stated guide for Liminal can be found here

Apache Liminal Documentation

Full documentation of Apache Liminal can be found here

High Level Architecture

High level architecture documentation can be found here

Example YAML config file

---
name: MyLiminalStack
owner: Bosco Albert Baracus
volumes:
  - volume: myvol1
    local:
      path: /Users/me/myvol1
images:
  - image: my_python_task_img
    type: python
    source: write_inputs
  - image: my_parallelized_python_task_img
    source: write_outputs
  - image: my_server_image
    type: python_server
    source: myserver
    endpoints:
      - endpoint: /myendpoint1
        module: my_server
        function: myendpoint1func
pipelines:
  - pipeline: my_pipeline
    start_date: 1970-01-01
    timeout_minutes: 45
    schedule: 0 * 1 * *
    metrics:
      namespace: TestNamespace
      backends: [ 'cloudwatch' ]
    tasks:
      - task: my_python_task
        type: python
        description: static input task
        image: my_python_task_img
        env_vars:
          NUM_FILES: 10
          NUM_SPLITS: 3
        mounts:
          - mount: mymount
            volume: myvol1
            path: /mnt/vol1
        cmd: python -u write_inputs.py
      - task: my_parallelized_python_task
        type: python
        description: parallelized python task
        image: my_parallelized_python_task_img
        env_vars:
          FOO: BAR
        executors: 3
        mounts:
          - mount: mymount
            volume: myvol1
            path: /mnt/vol1
        cmd: python -u write_inputs.py
services:
  - service: my_python_server
    description: my python server
    image: my_server_image

Installation

  1. Install this repository (HEAD)
   pip install git+https://github.com/apache/incubator-liminal.git
  1. Optional: set LIMINAL_HOME to path of your choice (if not set, will default to ~/liminal_home)
echo 'export LIMINAL_HOME=</path/to/some/folder>' >> ~/.bash_profile && source ~/.bash_profile

Authoring pipelines

This involves at minimum creating a single file called liminal.yml as in the example above.

If your pipeline requires custom python code to implement tasks, they should be organized like this

If your pipeline introduces imports of external packages which are not already a part of the liminal framework (i.e. you had to pip install them yourself), you need to also provide a requirements.txt in the root of your project.

Testing the pipeline locally

When your pipeline code is ready, you can test it by running it locally on your machine.

  1. Ensure you have The Docker engine running locally, and enable a local Kubernetes cluster: Kubernetes configured

And allocate it at least 3 CPUs (under "Resources" in the Docker preference UI).

If you want to execute your pipeline on a remote kubernetes cluster, make sure the cluster is configured using :

kubectl config set-context <your remote kubernetes cluster>
  1. Build the docker images used by your pipeline.

In the example pipeline above, you can see that tasks and services have an "image" field - such as "my_static_input_task_image". This means that the task is executed inside a docker container, and the docker container is created from a docker image where various code and libraries are installed.

You can take a look at what the build process looks like, e.g. here

In order for the images to be available for your pipeline, you'll need to build them locally:

cd </path/to/your/liminal/code>
liminal build

You'll see that a number of outputs indicating various docker images built.

  1. Create a kubernetes local volume
    In case your Yaml includes working with volumes please first run the following command:
cd </path/to/your/liminal/code> 
liminal create
  1. Deploy the pipeline:
cd </path/to/your/liminal/code> 
liminal deploy

Note: after upgrading liminal, it's recommended to issue the command

liminal deploy --clean

This will rebuild the airlfow docker containers from scratch with a fresh version of liminal, ensuring consistency.

  1. Start the server
liminal start
  1. Stop the server
liminal stop
  1. Display the server logs
liminal logs --follow/--tail

Number of lines to show from the end of the log:
liminal logs --tail=10

Follow log output:
liminal logs --follow
  1. Navigate to http://localhost:8080/admin

  2. You should see your pipeline The pipeline is scheduled to run according to the json schedule: 0 * 1 * * field in the .yml file you provided.

  3. To manually activate your pipeline: Click your pipeline and then click "trigger DAG" Click "Graph view" You should see the steps in your pipeline getting executed in "real time" by clicking "Refresh" periodically.

Pipeline activation

Contributing

More information on contributing can be found here

Running Tests (for contributors)

When doing local development and running Liminal unit-tests, make sure to set LIMINAL_STAND_ALONE_MODE=True

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

apache-liminal-zion-2.tar.gz (74.6 kB view details)

Uploaded Source

Built Distribution

apache_liminal_zion-2.0-py3-none-any.whl (199.4 kB view details)

Uploaded Python 3

File details

Details for the file apache-liminal-zion-2.tar.gz.

File metadata

  • Download URL: apache-liminal-zion-2.tar.gz
  • Upload date:
  • Size: 74.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.3

File hashes

Hashes for apache-liminal-zion-2.tar.gz
Algorithm Hash digest
SHA256 44f29a8beb3ffccc78a4d3913acc04538d55cb18f876896cd5196b15ff032714
MD5 5d0d5e74c0c1342fadfd3dfd4e80e6e8
BLAKE2b-256 8bee242a1fb85af4951b6d0168a7918d7cc036fafd4554dc262c4fe4b38c4a90

See more details on using hashes here.

File details

Details for the file apache_liminal_zion-2.0-py3-none-any.whl.

File metadata

  • Download URL: apache_liminal_zion-2.0-py3-none-any.whl
  • Upload date:
  • Size: 199.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.3

File hashes

Hashes for apache_liminal_zion-2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0546b50bbc9e880cf411cc3a1c08a4d71864782c08c2a7f367f68d081b41023d
MD5 60a137df055043d07a5d5177a91884ef
BLAKE2b-256 0efdfde9489bb45720d8b6653ab1c62179c65040871d3c9d1bc2a057ff8c7ee3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page