Python library to parse Apertium stream format
Project description
Apertium Streamparser
Python 3 library to parse Apertium stream format, generating LexicalUnit
s.
Installation
Streamparser is available through PyPi:
$ pip install apertium-streamparser
$ apertium-streamparser
$^vino/vino<n><m><sg>/venir<vblex><ifi><p3><sg>$
[[SReading(baseform='vino', tags=['n', 'm', 'sg'])], [SReading(baseform='venir', tags=['vblex', 'ifi', 'p3', 'sg'])]]
Installation through PyPi will also install the streamparser
module.
Usage
As a library
With string input
>>> from streamparser import parse
>>> lexical_units = parse('^hypercholesterolemia/*hypercholesterolemia$\[\]\^\$[^ignoreme/yesreally$]^a\/s/a\/s<n><nt>$^vino/vino<n><m><sg>/venir<vblex><ifi><p3><sg>$.eefe^dímelo/decir<vblex><imp><p2><sg>+me<prn><enc><p1><mf><sg>+lo<prn><enc><p3><nt>/decir<vblex><imp><p2><sg>+me<prn><enc><p1><mf><sg>+lo<prn><enc><p3><m><sg>$')
>>> for lexical_unit in lexical_units:
print('%s (%s) → %s' % (lexical_unit.wordform, lexical_unit.knownness, lexical_unit.readings))
hypercholesterolemia (<class 'streamparser.unknown'>) → [[SReading(baseform='*hypercholesterolemia', tags=[])]]
a\/s (<class 'streamparser.known'>) → [[SReading(baseform='a\\/s', tags=['n', 'nt'])]]
vino (<class 'streamparser.known'>) → [[SReading(baseform='vino', tags=['n', 'm', 'sg'])], [SReading(baseform='venir', tags=['vblex', 'ifi', 'p3', 'sg'])]]
dímelo (<class 'streamparser.known'>) → [[SReading(baseform='decir', tags=['vblex', 'imp', 'p2', 'sg']), SReading(baseform='me', tags=['prn', 'enc', 'p1', 'mf', 'sg']), SReading(baseform='lo', tags=['prn', 'enc', 'p3', 'nt'])], [SReading(baseform='decir', tags=['vblex', 'imp', 'p2', 'sg']), SReading(baseform='me', tags=['prn', 'enc', 'p1', 'mf', 'sg']), SReading(baseform='lo', tags=['prn', 'enc', 'p3', 'm', 'sg'])]]
With file input
>>> from streamparser import parse_file
>>> lexical_units = parse_file(open('~/Downloads/analyzed.txt'))
>>> for lexical_unit in lexical_units:
print('%s (%s) → %s' % (lexical_unit.wordform, lexical_unit.knownness, lexical_unit.readings))
Høgre (<class 'streamparser.known'>) → [[SReading(baseform='Høgre', tags=['np'])], [SReading(baseform='høgre', tags=['n', 'nt', 'sp'])], [SReading(baseform='høg', tags=['un', 'sint', 'sp', 'comp', 'adj'])], [SReading(baseform='høgre', tags=['f', 'n', 'ind', 'sg'])], [SReading(baseform='høgre', tags=['f', 'n', 'ind', 'sg'])], [SReading(baseform='høgre', tags=['sg', 'nt', 'ind', 'posi', 'adj'])], [SReading(baseform='høgre', tags=['mf', 'sg', 'ind', 'posi', 'adj'])], [SReading(baseform='høgre', tags=['un', 'ind', 'pl', 'posi', 'adj'])], [SReading(baseform='høgre', tags=['un', 'def', 'sp', 'posi', 'adj'])]]
kolonne (<class 'streamparser.known'>) → [[SReading(baseform='kolonne', tags=['m', 'n', 'ind', 'sg'])], [SReading(baseform='kolonne', tags=['m', 'n', 'ind', 'sg'])]]
Grunnprinsipp (<class 'streamparser.known'>) → [[SReading(baseform='grunnprinsipp', tags=['n', 'nt', 'ind', 'sg'])], S[Reading(baseform='grunnprinsipp', tags=['n', 'nt', 'pl', 'ind'])], [SReading(baseform='grunnprinsipp', tags=['n', 'nt', 'ind', 'sg'])], [SReading(baseform='grunnprinsipp', tags=['n', 'nt', 'pl', 'ind'])]]
7 (<class 'streamparser.known'>) → [[SReading(baseform='7', tags=['qnt', 'pl', 'det'])]]
px (<class 'streamparser.unknown'>) → []
From the terminal
With standard input
$ bzcat ~/corpora/nnclean2.txt.bz2 | apertium-deshtml | lt-proc -we /usr/share/apertium/apertium-nno/nno.automorf.bin | python3 streamparser.py
[[SReading(baseform='Høgre', tags=['np'])],
[SReading(baseform='høgre', tags=['n', 'sp', 'nt'])],
[SReading(baseform='høg', tags=['un', 'sp', 'adj', 'comp', 'sint'])],
[SReading(baseform='høgre', tags=['n', 'f', 'ind', 'sg'])],
[SReading(baseform='høgre', tags=['n', 'f', 'ind', 'sg'])],
[SReading(baseform='høgre', tags=['posi', 'ind', 'adj', 'nt', 'sg'])],
[SReading(baseform='høgre', tags=['posi', 'ind', 'adj', 'mf', 'sg'])],
[SReading(baseform='høgre', tags=['posi', 'ind', 'adj', 'un', 'pl'])],
[SReading(baseform='høgre', tags=['posi', 'def', 'sp', 'adj', 'un'])]]
[[SReading(baseform='kolonne', tags=['n', 'm', 'ind', 'sg'])],
[SReading(baseform='kolonne', tags=['n', 'm', 'ind', 'sg'])]]
...
With file input in terminal
$ bzcat ~/corpora/nnclean2.txt.bz2 | apertium-deshtml | lt-proc -we /usr/share/apertium/apertium-nno/nno.automorf.bin > analyzed.txt
$ python3 streamparser.py analyzed.txt
[[SReading(baseform='Høgre', tags=['np'])],
[SReading(baseform='høgre', tags=['n', 'sp', 'nt'])],
[SReading(baseform='høg', tags=['un', 'sp', 'adj', 'comp', 'sint'])],
[SReading(baseform='høgre', tags=['n', 'f', 'ind', 'sg'])],
[SReading(baseform='høgre', tags=['n', 'f', 'ind', 'sg'])],
[SReading(baseform='høgre', tags=['posi', 'ind', 'adj', 'nt', 'sg'])],
[SReading(baseform='høgre', tags=['posi', 'ind', 'adj', 'mf', 'sg'])],
[SReading(baseform='høgre', tags=['posi', 'ind', 'adj', 'un', 'pl'])],
[SReading(baseform='høgre', tags=['posi', 'def', 'sp', 'adj', 'un'])]]
[[SReading(baseform='kolonne', tags=['n', 'm', 'ind', 'sg'])],
[SReading(baseform='kolonne', tags=['n', 'm', 'ind', 'sg'])]]
...
Contributing
Streamparser uses TravisCI for continous integration. Locally, use
make test
to run the same checks it does. Use pip install -r requirements.txt
to install the requirements required for development, e.g. linters.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file apertium-streamparser-5.0.2.tar.gz
.
File metadata
- Download URL: apertium-streamparser-5.0.2.tar.gz
- Upload date:
- Size: 19.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fd83d3d573d23c54b34339865cdd40cded3687311c18629d2d39c4e8ad1da597 |
|
MD5 | bfd1392e541c7e51d4a69995c9277bc0 |
|
BLAKE2b-256 | 6e04c85695308d203650dc0d9f550fbdc0e6a839364b7515d77a76f2e8e19de9 |
File details
Details for the file apertium_streamparser-5.0.2-py3-none-any.whl
.
File metadata
- Download URL: apertium_streamparser-5.0.2-py3-none-any.whl
- Upload date:
- Size: 5.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e14e99f9a682725b6f8c0955f86d79319d7786d2e43b1dcaa50f4151b0410771 |
|
MD5 | c78164e8f3a530bf1a53fc17888b4c04 |
|
BLAKE2b-256 | ca4785027843345b1d7e4d0beca98c3c55ac8bb1b2d9069a126877b645be481c |