Skip to main content

Python library to parse Apertium stream format

Project description

# Apertium Streamparser

[![Build Status](https://travis-ci.org/apertium/streamparser.svg)](https://travis-ci.org/apertium/streamparser)
[![Coverage Status](https://coveralls.io/repos/github/apertium/streamparser/badge.svg?branch=master)](https://coveralls.io/github/apertium/streamparser?branch=master)

Python library to parse [Apertium stream format](http://wiki.apertium.org/wiki/Apertium_stream_format), generating `LexicalUnit`s.

## Installation

Streamparser is available through [PyPi](https://pypi.org/project/apertium-streamparser/):

$ pip install apertium-streamparser
$ apertium-streamparser
$^vino/vino<n><m><sg>/venir<vblex><ifi><p3><sg>$
[[SReading(baseform='vino', tags=['n', 'm', 'sg'])], [SReading(baseform='venir', tags=['vblex', 'ifi', 'p3', 'sg'])]]

Installation through PyPi will also install the `streamparser` module.

## Usage

### As a library

#### With string input

```python
>>> from streamparser import parse
>>> lexical_units = parse('^hypercholesterolemia/*hypercholesterolemia$\[\]\^\$[^ignoreme/yesreally$]^a\/s/a\/s<n><nt>$^vino/vino<n><m><sg>/venir<vblex><ifi><p3><sg>$.eefe^dímelo/decir<vblex><imp><p2><sg>+me<prn><enc><p1><mf><sg>+lo<prn><enc><p3><nt>/decir<vblex><imp><p2><sg>+me<prn><enc><p1><mf><sg>+lo<prn><enc><p3><m><sg>$')
>>> for lexical_unit in lexical_units:
print('%s (%s) → %s' % (lexical_unit.wordform, lexical_unit.knownness, lexical_unit.readings))
```

hypercholesterolemia (<class 'streamparser.unknown'>) → [[SReading(baseform='*hypercholesterolemia', tags=[])]]
a\/s (<class 'streamparser.known'>) → [[SReading(baseform='a\\/s', tags=['n', 'nt'])]]
vino (<class 'streamparser.known'>) → [[SReading(baseform='vino', tags=['n', 'm', 'sg'])], [SReading(baseform='venir', tags=['vblex', 'ifi', 'p3', 'sg'])]]
dímelo (<class 'streamparser.known'>) → [[SReading(baseform='decir', tags=['vblex', 'imp', 'p2', 'sg']), SReading(baseform='me', tags=['prn', 'enc', 'p1', 'mf', 'sg']), SReading(baseform='lo', tags=['prn', 'enc', 'p3', 'nt'])], [SReading(baseform='decir', tags=['vblex', 'imp', 'p2', 'sg']), SReading(baseform='me', tags=['prn', 'enc', 'p1', 'mf', 'sg']), SReading(baseform='lo', tags=['prn', 'enc', 'p3', 'm', 'sg'])]]

#### With file input

```python
>>> from streamparser import parse_file
>>> lexical_units = parse_file(open('~/Downloads/analyzed.txt'))
>>> for lexical_unit in lexical_units:
print('%s (%s) → %s' % (lexical_unit.wordform, lexical_unit.knownness, lexical_unit.readings))
```

Høgre (<class 'streamparser.known'>) → [[SReading(baseform='Høgre', tags=['np'])], [SReading(baseform='høgre', tags=['n', 'nt', 'sp'])], [SReading(baseform='høg', tags=['un', 'sint', 'sp', 'comp', 'adj'])], [SReading(baseform='høgre', tags=['f', 'n', 'ind', 'sg'])], [SReading(baseform='høgre', tags=['f', 'n', 'ind', 'sg'])], [SReading(baseform='høgre', tags=['sg', 'nt', 'ind', 'posi', 'adj'])], [SReading(baseform='høgre', tags=['mf', 'sg', 'ind', 'posi', 'adj'])], [SReading(baseform='høgre', tags=['un', 'ind', 'pl', 'posi', 'adj'])], [SReading(baseform='høgre', tags=['un', 'def', 'sp', 'posi', 'adj'])]]
kolonne (<class 'streamparser.known'>) → [[SReading(baseform='kolonne', tags=['m', 'n', 'ind', 'sg'])], [SReading(baseform='kolonne', tags=['m', 'n', 'ind', 'sg'])]]
Grunnprinsipp (<class 'streamparser.known'>) → [[SReading(baseform='grunnprinsipp', tags=['n', 'nt', 'ind', 'sg'])], S[Reading(baseform='grunnprinsipp', tags=['n', 'nt', 'pl', 'ind'])], [SReading(baseform='grunnprinsipp', tags=['n', 'nt', 'ind', 'sg'])], [SReading(baseform='grunnprinsipp', tags=['n', 'nt', 'pl', 'ind'])]]
7 (<class 'streamparser.known'>) → [[SReading(baseform='7', tags=['qnt', 'pl', 'det'])]]
px (<class 'streamparser.unknown'>) → []

### From the terminal

#### With standard input

```bash
$ bzcat ~/corpora/nnclean2.txt.bz2 | apertium-deshtml | lt-proc -we /usr/share/apertium/apertium-nno/nno.automorf.bin | python3 streamparser.py
[[SReading(baseform='Høgre', tags=['np'])],
[SReading(baseform='høgre', tags=['n', 'sp', 'nt'])],
[SReading(baseform='høg', tags=['un', 'sp', 'adj', 'comp', 'sint'])],
[SReading(baseform='høgre', tags=['n', 'f', 'ind', 'sg'])],
[SReading(baseform='høgre', tags=['n', 'f', 'ind', 'sg'])],
[SReading(baseform='høgre', tags=['posi', 'ind', 'adj', 'nt', 'sg'])],
[SReading(baseform='høgre', tags=['posi', 'ind', 'adj', 'mf', 'sg'])],
[SReading(baseform='høgre', tags=['posi', 'ind', 'adj', 'un', 'pl'])],
[SReading(baseform='høgre', tags=['posi', 'def', 'sp', 'adj', 'un'])]]
[[SReading(baseform='kolonne', tags=['n', 'm', 'ind', 'sg'])],
[SReading(baseform='kolonne', tags=['n', 'm', 'ind', 'sg'])]]
...
```

#### With file input in terminal

```bash
$ bzcat ~/corpora/nnclean2.txt.bz2 | apertium-deshtml | lt-proc -we /usr/share/apertium/apertium-nno/nno.automorf.bin > analyzed.txt
$ python3 streamparser.py analyzed.txt
[[SReading(baseform='Høgre', tags=['np'])],
[SReading(baseform='høgre', tags=['n', 'sp', 'nt'])],
[SReading(baseform='høg', tags=['un', 'sp', 'adj', 'comp', 'sint'])],
[SReading(baseform='høgre', tags=['n', 'f', 'ind', 'sg'])],
[SReading(baseform='høgre', tags=['n', 'f', 'ind', 'sg'])],
[SReading(baseform='høgre', tags=['posi', 'ind', 'adj', 'nt', 'sg'])],
[SReading(baseform='høgre', tags=['posi', 'ind', 'adj', 'mf', 'sg'])],
[SReading(baseform='høgre', tags=['posi', 'ind', 'adj', 'un', 'pl'])],
[SReading(baseform='høgre', tags=['posi', 'def', 'sp', 'adj', 'un'])]]
[[SReading(baseform='kolonne', tags=['n', 'm', 'ind', 'sg'])],
[SReading(baseform='kolonne', tags=['n', 'm', 'ind', 'sg'])]]
...
```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for apertium-streamparser, version 5.0.1
Filename, size File type Python version Upload date Hashes
Filename, size apertium_streamparser-5.0.1-py3-none-any.whl (7.7 kB) File type Wheel Python version 3.6 Upload date Hashes View
Filename, size apertium-streamparser-5.0.1.tar.gz (18.9 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page