Skip to main content

A package to convert API responses to pandas dataframe

Project description

API to DataFrame

Python library that simplifies obtaining data from API endpoints by converting them directly into Pandas DataFrames. This library offers robust features, including retry strategies for failed requests.

Github

PyPI - Status PyPI - Downloads PyPI - Version

PyPI - Python Version

CI CD

Codecov

Project Stack

Python  Docker  Poetry  GitHub Actions  CodeCov  pypi  pandas  pytest 

Installation

To install the package using pip, use the following command:

pip install api-to-dataframe

To install the package using poetry, use the following command:

poetry add api-to-dataframe

User Guide

## Importing library
from api_to_dataframe import ClientBuilder, RetryStrategies

# Create a client for simple ingest data from API (timeout 1 second)
client = ClientBuilder(endpoint="https://api.example.com")

# if you can define timeout with LINEAR_RETRY_STRATEGY and set headers:
headers = {
    "application_name": "api_to_dataframe"
}
client = ClientBuilder(endpoint="https://api.example.com"
                        ,retry_strategy=RetryStrategies.LINEAR_RETRY_STRATEGY
                        ,connection_timeout=2
                        ,headers=headers)

"""
NOTE: by default the quantity of retries is 3 and the time between retries is 1 second, but you can define manually.
"""

client = ClientBuilder(endpoint="https://api.example.com"
                        ,retry_strategy=RetryStrategies.LINEAR_RETRY_STRATEGY
                        ,connection_timeout=10
                        ,headers=headers
                        ,retries=5
                        ,initial_delay=10)


### timeout, retry_strategy and headers are opcionals parameters

# Get data from the API
data = client.get_api_data()

# Convert the data to a DataFrame
df = client.api_to_dataframe(data)

# Display the DataFrame
print(df)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

api_to_dataframe-1.3.0.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

api_to_dataframe-1.3.0-py3-none-any.whl (6.5 kB view details)

Uploaded Python 3

File details

Details for the file api_to_dataframe-1.3.0.tar.gz.

File metadata

  • Download URL: api_to_dataframe-1.3.0.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.9.19 Linux/6.5.0-1022-azure

File hashes

Hashes for api_to_dataframe-1.3.0.tar.gz
Algorithm Hash digest
SHA256 ce08e52ee026ec8ea83d9452e69005a2c1b78a5bb412b50bad82e000db3767cf
MD5 aeaa827fe9641ee011d83188e81c9dbf
BLAKE2b-256 6bae28fdb071f606193aa6058775b21bca97084c9b2ce02cef765febcea7bfa2

See more details on using hashes here.

File details

Details for the file api_to_dataframe-1.3.0-py3-none-any.whl.

File metadata

  • Download URL: api_to_dataframe-1.3.0-py3-none-any.whl
  • Upload date:
  • Size: 6.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.9.19 Linux/6.5.0-1022-azure

File hashes

Hashes for api_to_dataframe-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c660df17b03ed60a882279285fd9537a665e0b639292ce9550c9ee8b5a9413ab
MD5 381abe18960e3e6eddfae2b102b39a6f
BLAKE2b-256 858ae3242f9005bc8f7d02aa6f17972c3c9720dec586c3fab69ae39c8d049e20

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page