Skip to main content

Automatic Piecewise Linear Regression

Project description

APLR

Automatic Piecewise Linear Regression

About

APLR allows you to build predictive and interpretable regression or classification machine learning models in Python, using the Automatic Piecewise Linear Regression (APLR) methodology developed by Mathias von Ottenbreit. APLR often rivals tree-based methods in predictive accuracy, while offering smoother, more interpretable predictions.

For further details, see the documentation. You may also read the published article for additional insights: Link 1 and Link 2. Additional functionality has been added since the article was published.

Installation

To install APLR, use the following command:

pip install aplr

Availability

APLR is available for Windows, most Linux distributions, and macOS.

Usage

Example Python scripts are available here.

Sponsorship

Consider sponsoring Von Ottenbreit Data Science by clicking the Sponsor button on the repository. Sufficient funding will help maintain and further develop APLR.

API Reference

Contact Information

For inquiries, please email: ottenbreitdatascience@gmail.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aplr-10.7.4.tar.gz (3.0 MB view details)

Uploaded Source

Built Distributions

aplr-10.7.4-pp310-pypy310_pp73-win_amd64.whl (249.3 kB view details)

Uploaded PyPy Windows x86-64

aplr-10.7.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (352.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

aplr-10.7.4-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (377.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

aplr-10.7.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl (322.8 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

aplr-10.7.4-pp310-pypy310_pp73-macosx_10_14_x86_64.whl (367.6 kB view details)

Uploaded PyPy macOS 10.14+ x86-64

aplr-10.7.4-pp39-pypy39_pp73-win_amd64.whl (249.6 kB view details)

Uploaded PyPy Windows x86-64

aplr-10.7.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (352.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

aplr-10.7.4-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (377.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

aplr-10.7.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl (322.9 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

aplr-10.7.4-pp39-pypy39_pp73-macosx_10_14_x86_64.whl (367.5 kB view details)

Uploaded PyPy macOS 10.14+ x86-64

aplr-10.7.4-pp38-pypy38_pp73-win_amd64.whl (249.3 kB view details)

Uploaded PyPy Windows x86-64

aplr-10.7.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (351.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

aplr-10.7.4-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (375.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

aplr-10.7.4-pp38-pypy38_pp73-macosx_11_0_arm64.whl (322.8 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

aplr-10.7.4-pp38-pypy38_pp73-macosx_10_14_x86_64.whl (367.5 kB view details)

Uploaded PyPy macOS 10.14+ x86-64

aplr-10.7.4-cp312-cp312-win_amd64.whl (251.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

aplr-10.7.4-cp312-cp312-win32.whl (221.4 kB view details)

Uploaded CPython 3.12 Windows x86

aplr-10.7.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

aplr-10.7.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (6.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

aplr-10.7.4-cp312-cp312-macosx_11_0_arm64.whl (350.4 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

aplr-10.7.4-cp312-cp312-macosx_10_14_x86_64.whl (392.5 kB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

aplr-10.7.4-cp311-cp311-win_amd64.whl (250.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

aplr-10.7.4-cp311-cp311-win32.whl (221.0 kB view details)

Uploaded CPython 3.11 Windows x86

aplr-10.7.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

aplr-10.7.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (6.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

aplr-10.7.4-cp311-cp311-macosx_11_0_arm64.whl (348.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

aplr-10.7.4-cp311-cp311-macosx_10_14_x86_64.whl (390.6 kB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

aplr-10.7.4-cp310-cp310-win_amd64.whl (249.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

aplr-10.7.4-cp310-cp310-win32.whl (220.3 kB view details)

Uploaded CPython 3.10 Windows x86

aplr-10.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

aplr-10.7.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (6.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

aplr-10.7.4-cp310-cp310-macosx_11_0_arm64.whl (346.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

aplr-10.7.4-cp310-cp310-macosx_10_14_x86_64.whl (389.2 kB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

aplr-10.7.4-cp39-cp39-win_amd64.whl (249.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

aplr-10.7.4-cp39-cp39-win32.whl (220.6 kB view details)

Uploaded CPython 3.9 Windows x86

aplr-10.7.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

aplr-10.7.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (6.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

aplr-10.7.4-cp39-cp39-macosx_11_0_arm64.whl (347.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

aplr-10.7.4-cp39-cp39-macosx_10_14_x86_64.whl (389.4 kB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

aplr-10.7.4-cp38-cp38-win_amd64.whl (249.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

aplr-10.7.4-cp38-cp38-win32.whl (220.4 kB view details)

Uploaded CPython 3.8 Windows x86

aplr-10.7.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

aplr-10.7.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (6.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

aplr-10.7.4-cp38-cp38-macosx_11_0_arm64.whl (346.7 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

aplr-10.7.4-cp38-cp38-macosx_10_14_x86_64.whl (388.9 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file aplr-10.7.4.tar.gz.

File metadata

  • Download URL: aplr-10.7.4.tar.gz
  • Upload date:
  • Size: 3.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for aplr-10.7.4.tar.gz
Algorithm Hash digest
SHA256 111b9b161fc2d2987d09728a63b0e4a174ca005b8d9151c26f6af323e40d6d54
MD5 4f8e2d17a54ca97e47b70c2cb44792c8
BLAKE2b-256 55a3e1cb954a232c6f23b5071f5b62b0e87227fbdf990c0460799f5255657386

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 0430a12298747d2124513b3e1260bba7d8aa6aa0e3dbb4c14fe6485d7e53b6d6
MD5 2b3398eb274ec6bfcc4ed84d01aaadfe
BLAKE2b-256 56c8347230ec18d6df855311b6d8c1278105377072c64786c666cd2362453989

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cbe812ef9126a4c3c195f8f2b667215192b3a12fbf7caebc39ad2832043d659c
MD5 57ad30ce35ddcc185cdb00b21b43209f
BLAKE2b-256 6bc6b2888cb5f4d71df89b0764e3a11bc47c9620e7052f18cc51706b2eb357ec

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c6a74343911cebbe2aa2d7e0effe0c8d596b0cb74a273a83bffe37d6c72672d1
MD5 8da053315bd24468ef5f83de14a8aa99
BLAKE2b-256 2a62f63d7c5351e2717eceb2483e2ad4172f5feae657c61681e101d88809d5d8

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 690b74202ed08ba994eb9af475dc7a4c6a2c2270aa4a7f320f0040c52c5a8e72
MD5 988a8d5936b68cbd053bb551b6892e66
BLAKE2b-256 5ba607e3ef0833b33abe0feca642236a6b2b8a15ac7796ca4504befc10cb5110

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-pp310-pypy310_pp73-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-pp310-pypy310_pp73-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0b2bea4aad14ff9eec310e5c2a4c14d1303af9a0ec8ff6ef464cf74252f91c5c
MD5 18a0234b47fb82cc296735dd2f61ce39
BLAKE2b-256 15c01fb44cbb220d93df1df20989a3c4fd8dfbf32768e49f2ec43cdaf66b89ca

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 cb46ff4d1433dbd49968249267424b2fd43cdc24d38525e00374fa5c054f0355
MD5 bada33636adc14843e8300a7faf41ba7
BLAKE2b-256 249c4dc1afba96185d00cde75c825de89a890450b5083c374ddc55f80ba28574

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5332b733fd6ebdbaf15206316f540afe4f545897b8e1b68b860a399bdba37cb2
MD5 8f22b9c24244e25b5f0fca3327a57913
BLAKE2b-256 0b95b0d1b0bba1cabd1ed9958344c26234ca8a8e963fd0147f2375b0926ed869

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fbd6b2dbe36ceebf738f73e0eefa6eeec5e685fb3d8a998a231d5149a4b56407
MD5 61dc17e61d30540fc89128c7c4b2269d
BLAKE2b-256 a4a593f67829d1043fe623e03f4a1763fad5e4d943fb3da039b8bef1cb91a98b

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d275373737a184ddd4d0258536cf7ca13323c7b004f0c194cd2cb0df0edce25e
MD5 19fbb0d9d08f4a91551c459a9cab31bb
BLAKE2b-256 03e1316eace92a8cfc4b5b345f4ce55a29461b74102d670bb919866ec72c7b71

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-pp39-pypy39_pp73-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-pp39-pypy39_pp73-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a4b38fad150554b572b2c86f51a09c7fff928678fddcf363cf7f5258a420a611
MD5 f4c726ae19e6cbe9b0f4a9a819f575c6
BLAKE2b-256 079d17e4e2b378c568afdd64751628b1b023667c4e685167eb5c5a3afa3766db

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 74f420a44bf233bab8d923dba0c44d49938bd7bf73a95a34ef8ffc3fbcb08b38
MD5 1d2aa466cdac10c412594f280551b1a8
BLAKE2b-256 c9c0623b5e0f6d1038052f539a6e68e48c8e80a61631f2c21ecf766e539b1e6d

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b767c39bf93202d3e68e53d408155ce3461cfc7651626fae784ce5f2e4a32809
MD5 f58adfa7b27dd41f2db727e1e7633123
BLAKE2b-256 de31b58c28a3a7bc284df8d8be7d43f1b3ad90abe5d1630ae61907f61b0138d4

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 09dede16f2db15ee5c6a0ad5032e986b671a5cf2b128e2181013873e5eeec499
MD5 943cfcd2df40b0e3639660d127960d2f
BLAKE2b-256 f39c5018727489bedde1ef53eb032f13454b9876f5e85a8a3b8742571968527e

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3ec88df565e169d75a1dd5ba660757c1de8312e848c8d2ea082b5c8589f16baf
MD5 9ca4191631a1608f79e6620aa266d447
BLAKE2b-256 11dd7aecc2815b4bcc91e090781d9b77b655e3716e4b0641c90158f4aa9b651d

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-pp38-pypy38_pp73-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-pp38-pypy38_pp73-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 86c4915fe9f1a975d5b0123cf85285e35f7bf25e7ddf61bdf598976b9b7a5c17
MD5 cdde86c45d271ca1fda4fded431863af
BLAKE2b-256 1e68c73351ca4d30daae5f5cd3bdc3b8a50ab164b206f9780a5bdbe67cf9b81e

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: aplr-10.7.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 251.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for aplr-10.7.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 caff5813bf8635a6d018cc135dfc115f3bab06a0a712c2284a153326d31541a2
MD5 3d3011dd4a66d18cb2131f9bcb06b06a
BLAKE2b-256 9d1386936254955c200520a2927e15dccf986b9e48b6aba3daabc1ea47cdd082

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp312-cp312-win32.whl.

File metadata

  • Download URL: aplr-10.7.4-cp312-cp312-win32.whl
  • Upload date:
  • Size: 221.4 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for aplr-10.7.4-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 493cecf78960dd2d269cc420bc5b9c927c9e312fceec7d1b8899877eae4ab044
MD5 dd8ab51571f52299893361bd992015a8
BLAKE2b-256 dd0f050caf590fc1d7b4e3ddadfbee594e5a34853ebd649d2a974f2a53100298

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a854a6a2a6d9651ce693c4398363f14a7852a5c06503ccc86397b22435ce7579
MD5 b8eab9bd6ce03c141d4a0d6fb103b65b
BLAKE2b-256 6c7a672848b7af09c2118599e98e67bac6bcc39d1237af1c8100499d95df0840

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7b3cca42fa230f61aea8f47ae7cfa68e7c2e0d382f2076bcac9a9e6c41d89d27
MD5 a93690e96427e64314f8c64b3ef8d847
BLAKE2b-256 7051e470e48d0a5cf3b8b1eb00637c836149e88c7fcaf2f14cc3bef0b429eb08

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2324fab47855a6620d69065ca7c93f59e7c5dc7465a253d0e08ebc96d8e9f7a6
MD5 849023d3a538cf963d89950d1e23a0a5
BLAKE2b-256 453168b3325533e135ee6f0b9046099536aa9cf6c05a9ccdb58a61bc545ae158

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e4d654a5b84f2d448bcb3bfe60ea8828ebd6431571b750ba915f34d34eca4c02
MD5 82e74354faa45b5a4624172766c002cb
BLAKE2b-256 0b62cf97d3318971af02f9a686930368e72a56122d7d4fb41e2d2566296d1763

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: aplr-10.7.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 250.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for aplr-10.7.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8e71f50603a253044d2c03fafa4d4807270bc7e1348af7ac06423b49d73c5c73
MD5 21ac5c767a43391d8dda07ed5ac2f449
BLAKE2b-256 fee44fe7650772ffe6e3e8a87a4efd714144c4c7896ca6aeb3098172bdbcd5f4

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: aplr-10.7.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 221.0 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for aplr-10.7.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 a7054c3cd4211af83f6b8103f247257eb4d642abeda332515a8fd845ce503121
MD5 0dfadf59849e24feedf1e01be25586c3
BLAKE2b-256 a5023c6d1f10e2fe6c08f26262051b12e7b822e704b5116101a6f8487a51a523

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae96ca1e4355650adbe04327dccdb91a83b97e56ad1695596b89d955e3131592
MD5 6ac054ce07173cd17fd40c3733147f1b
BLAKE2b-256 d1c860a3ba32690c1277192adfbaae8ef370d0638706f0b47127b3b93a18a5e3

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ab6145147bcff49addc1f1ead2084363086a644dc413dd41e9b65a36826f70dd
MD5 f9f6c0bb1267c95aa7b0ff92beffecaa
BLAKE2b-256 562a518db278f4ce9daca51aa79aed06eca727fb6a8b1c853c0dc122db316f80

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 108bf096161c251d62ec694fdbfc67d9a3b586c79be213906ea6c470a3fd001c
MD5 982d826cbf4b66270a457179d074c1d4
BLAKE2b-256 00629bbd10d38bc4b652304cb6550a69e73ed09428f35dd459a784f246cb5749

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0e3d402b655653fc51402f02d765dc3fdbf06e9e68ff066061537f893172413e
MD5 031bd0dc52046b0382e7a14d1a5d584b
BLAKE2b-256 08d9ccc967312783ee2d99645ed644a5fe82c58d46e8405a92e6696459bd5079

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: aplr-10.7.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 249.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for aplr-10.7.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4d688675be6a2e684547e3944171e4c76eb7eff80d55f0db088b8ac12140dc22
MD5 e9465066f128e40d344f44c566e0a510
BLAKE2b-256 007757005be114b343e8652917dcbb837f70dc18d83f28802a50fe86b6ee3b97

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: aplr-10.7.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 220.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for aplr-10.7.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 468689ce986feeb9450eedffb4fda015c985251200fd84b2c9e762e1e0343c2d
MD5 f10059b8f247a280e26fd530cde4b04e
BLAKE2b-256 2fe263ce4d2ce757eb237a107080a8538ac411cfaffaca855f2980d1dcfe354c

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49a73c0d44eb2210b4bcc35f16fcbd4d295191b9f09fe3e8a267544cb6abf25c
MD5 d64b9d7effe2ceee4f1dbabff9e52050
BLAKE2b-256 e563cbd174378a9acfda8da58e359191577a1ad0d813677663d9eb80c29d61de

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4885799eeca7e7db0c1ad1a7cd5461e160c6e768dadbda61f0faeda2d27e9f61
MD5 7b0994eb432ed16c0593c7e6fc3fa234
BLAKE2b-256 c8b7494aec7a1c3457c79fb3cc221f5a3b9c928b8c2bf4ae726030ed72506aed

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8c4d93c205e8a323227b157966815ce4625ee0ead7ed5b2e70df2e1e062abcae
MD5 85eaa058269fbdfb8e9526d30072f2e9
BLAKE2b-256 dd84b3cf35d293cd304593f1e99b13486011b054669e8a8db4dd5868ffe11d9f

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 167c3744636eaecf8e9abec49b2388fd19bbe0706399ff0e914d7525618fbbd5
MD5 ad5a4487a66522265675a13485164db4
BLAKE2b-256 b24b44db59f44d055b3d4dbef28842b4cfa166f24df43aee695743df0ab02d4a

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: aplr-10.7.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 249.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for aplr-10.7.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5d1984bcae4e60545036343b116a80541232c31d9cb1352d158d55d3e9ccf1e1
MD5 384b9f902259d70fa3b50e6cdf4d5ce5
BLAKE2b-256 e4648f338a7c1a1f08a556b48a36a6c9d916beefd56ec6a06e64b548e8f257c5

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: aplr-10.7.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 220.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for aplr-10.7.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ad41df885e2066e7acb165d165d5c4eda1e08a35f94efae70a4055242d2b664d
MD5 34ee409a8334548d21e2644b8d2aefd2
BLAKE2b-256 3451acbb5f7cda78c1dcabd638bdb3910d8a763b2fbd13c9932629c9d47445bc

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 70fdd47401ece8a0765ed466dd388459395142dbdee85c7090964916b808883c
MD5 fa2ae1fb5fdc0f7da02bc0af02b32523
BLAKE2b-256 6ccadd8bbd0494d409213a66e681132770f4ebb877d271d280b64d4f5f1a21e0

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 edb195e36c58477b2c517b3d49d22ed46045034f0a43a23221e919a82be29ce2
MD5 fc96fe97b035499f5059ff0fcb73eb39
BLAKE2b-256 aeab2fc3dda7e3969916b4e9c92c763fda94ddbd07a9e49f23be8913d3e70a3a

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2582296e2673fccae7393649a99be8397fe167dbb4699cff99cfd5b00e49cf6d
MD5 23288ddddfbad4ee4ccd656d0425745b
BLAKE2b-256 cb68fbedd303ad047f5b8285b62c9478cbcb35ee6651661897d404178c2ff4dd

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5944d37b0416f1b6317e6f7e62eea7a1864705b72f4cc22ab1adb7a075c0970d
MD5 aa0c1e1b9e179dbb19aa19b74fc1dc84
BLAKE2b-256 b870404e057fa7fa5e389bc154e22c9b907c89101f0a955156c0fdd24d6cbc2e

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: aplr-10.7.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 249.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for aplr-10.7.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1f96f8218c87281e9c36ed4c71e92f9cf1055e065497fdd06395fb376631a2c3
MD5 e8242410f231650ca2e5581d73a51a12
BLAKE2b-256 19ee7fcb343b030846bb3b8263df8d88af969be4f7924ddffb22ab594e45a8d4

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: aplr-10.7.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 220.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for aplr-10.7.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 466d22667c50afbb2674e07d460e2f2456a57a5513b3664d9ce13635cb4b2ee6
MD5 083985280014bf7bd21ec4e6fe44077e
BLAKE2b-256 a4429f29ddd6559c0aa02fba34dec991b63814352dedf13b88d923543502f8a3

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4e2803a81ea66d120b15223fe173338826603d7775e5e216eeb97124c45e6570
MD5 3758ec5ef41b54f452961caecddb74d3
BLAKE2b-256 8a7bf13a43886289bc0f3e93dea725f708b3a7d66d25984270af9b8c9cc1245d

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f232ba2bc5801247381816b3919b7195d05f1b5e8358ea51c29021788cfe4e67
MD5 22da6e8c938446bd8659cdf1dd191f46
BLAKE2b-256 365baddcb17e8ae52cfc1e53eb1157f04f5a96db461f8ab33486a7ecb69836f3

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1e9ba15f258f49b5025ac7cbae1d4cabfb0598f5040ab769700f8a156068e236
MD5 f28b64f177ef51bbf261d9438f1cc9ae
BLAKE2b-256 dfbaa2b4b70b37f4b97b4aece72b2a0ee52afc1a0cb0a3e7932cbdc3149011f4

See more details on using hashes here.

File details

Details for the file aplr-10.7.4-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for aplr-10.7.4-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 398d87b75797e0ef6ba48c86d1a22ed07ad8e1a1b0741e26170f2deb8d2b06de
MD5 de16d4e1abd865297c9efc67676ae4de
BLAKE2b-256 744507641ccbe205dc87c0796b3ec12960c1140ec7d6963a7d3d6235e3e4bff6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page