Skip to main content

Appengine fixture loader

Project description

appengine-fixture-loader

A simple way to load Django-like fixtures into the local development datastore, originally intended to be used by testable_appengine.

https://img.shields.io/pypi/l/appengine-fixture-loader.svg https://badge.fury.io/py/appengine-fixture-loader.svg https://api.travis-ci.org/rbanffy/appengine-fixture-loader.svg https://img.shields.io/pypi/pyversions/appengine-fixture-loader.svg https://img.shields.io/pypi/dm/appengine-fixture-loader.svg https://coveralls.io/repos/rbanffy/appengine-fixture-loader/badge.svg?branch=master&service=github

Installing

For the less adventurous, Appengine-Fixture-Loader is available on PyPI at https://pypi.python.org/pypi/Appengine-Fixture-Loader.

Single-kind loads

Let’s say you have a model like this:

class Person(ndb.Model):
    """Our sample class"""
    first_name = ndb.StringProperty()
    last_name = ndb.StringProperty()
    born = ndb.DateTimeProperty()
    userid = ndb.IntegerProperty()
    thermostat_set_to = ndb.FloatProperty()
    snores = ndb.BooleanProperty()
    started_school = ndb.DateProperty()
    sleeptime = ndb.TimeProperty()
    favorite_movies = ndb.JsonProperty()
    processed = ndb.BooleanProperty(default=False)

If you want to load a data file like this:

[
    {
        "__id__": "jdoe",
        "born": "1968-03-03T00:00:00",
        "first_name": "John",
        "last_name": "Doe",
        "favorite_movies": [
            "2001",
            "The Day The Earth Stood Still (1951)"
        ],
        "snores": false,
        "sleeptime": "23:00",
        "started_school": "1974-02-15",
        "thermostat_set_to": 18.34,
        "userid": 1
    },

...

    {
        "born": "1980-05-25T00:00:00",
        "first_name": "Bob",
        "last_name": "Schneier",
        "favorite_movies": [
            "2001",
            "Superman"
        ],
        "snores": true,
        "sleeptime": "22:00",
        "started_school": "1985-08-01",
        "thermostat_set_to": 18.34,
        "userid": -5
    }
]

All you need to do is to:

from appengine_fixture_loader.loader import load_fixture

and then:

loaded_data = load_fixture('tests/persons.json', kind=Person)

In our example, loaded_data will contain a list of already persisted Person models you can then manipulate and persist again.

The __id__ attribute, when defined, will save the object with that given id. In our case, the key to the first object defined will be a ndb.Key(‘Person’, ‘jdoe’). The key may be defined on an object by object base - where the __id__ parameter is omitted, an automatic id will be generated - the key to the second one will be something like ndb.Key(‘Person’, 1).

Multi-kind loads

It’s convenient to be able to load multiple kinds of objects from a single file. For those cases, we provide a simple way to identify the kind of object being loaded and to provide a set of models to use when loading the objects.

Consider our original example model:

class Person(ndb.Model):
    """Our sample class"""
    first_name = ndb.StringProperty()
    last_name = ndb.StringProperty()
    born = ndb.DateTimeProperty()
    userid = ndb.IntegerProperty()
    thermostat_set_to = ndb.FloatProperty()
    snores = ndb.BooleanProperty()
    started_school = ndb.DateProperty()
    sleeptime = ndb.TimeProperty()
    favorite_movies = ndb.JsonProperty()
    processed = ndb.BooleanProperty(default=False)

and let’s add a second one:

class Dog(ndb.Model):
    """Another sample class"""
    name = ndb.StringProperty()

Now, if we wanted to make a single file load objects of the two kinds, we’d need to use the __kind__ attribute in the JSON:

[
    {
        "__kind__": "Person",
        "born": "1968-03-03T00:00:00",
        "first_name": "John",
        "last_name": "Doe",
        "favorite_movies": [
            "2001",
            "The Day The Earth Stood Still (1951)"
        ],
        "snores": false,
        "sleeptime": "23:00",
        "started_school": "1974-02-15",
        "thermostat_set_to": 18.34,
        "userid": 1
    },
    {
        "__kind__": "Dog",
        "name": "Fido"
    }
]

And, to load the file, we’d have to:

from appengine_fixture_loader.loader import load_fixture

and:

loaded_data = load_fixture('tests/persons_and_dogs.json',
                           kind={'Person': Person, 'Dog': Dog})

will result in a list of Persons and Dogs (in this case, one person and one dog).

Multi-kind, multi-level loads

Anther common case is having hierarchies of entities that you want to reconstruct for your tests.

Using slightly modified versions of our example classes:

class Person(ndb.Model):
    """Our sample class"""
    first_name = ndb.StringProperty()
    last_name = ndb.StringProperty()
    born = ndb.DateTimeProperty()
    userid = ndb.IntegerProperty()
    thermostat_set_to = ndb.FloatProperty()
    snores = ndb.BooleanProperty()
    started_school = ndb.DateProperty()
    sleeptime = ndb.TimeProperty()
    favorite_movies = ndb.JsonProperty()
    processed = ndb.BooleanProperty(default=False)
    appropriate_adult = ndb.KeyProperty()

and:

class Dog(ndb.Model):
    """Another sample class"""
    name = ndb.StringProperty()
    processed = ndb.BooleanProperty(default=False)
    owner = ndb.KeyProperty()

And using __children__[attribute_name]__ like meta-attributes, as in:

[
    {
        "__kind__": "Person",
        "born": "1968-03-03T00:00:00",
        "first_name": "John",
        "last_name": "Doe",

        ...

        "__children__appropriate_adult__": [
            {
                "__kind__": "Person",
                "born": "1970-04-27T00:00:00",

                ...

                "__children__appropriate_adult__": [
                    {
                        "__kind__": "Person",
                        "born": "1980-05-25T00:00:00",
                        "first_name": "Bob",

                        ...

                        "userid": 3
                    }
                ]
            }
        ]
    },
    {
        "__kind__": "Person",
        "born": "1999-09-19T00:00:00",
        "first_name": "Alice",

        ...

        "__children__appropriate_adult__": [
            {
                "__kind__": "Person",

                ...

                "__children__owner__": [
                    {
                        "__kind__": "Dog",
                        "name": "Fido"
                    }
                ]
            }
        ]
    }
]

you can reconstruct entire entity trees for your tests.

Parent/Ancestor-based relationships with automatic keys

It’s also possible to set the parent by using the __children__ attribute.

For our example classes, importing:

[
    {
        "__kind__": "Person",
        "first_name": "Alice",

        ...

        "__children__": [
            {
                "__kind__": "Person",
                "first_name": "Bob",
                ...

                "__children__owner__": [
                    {
                        "__kind__": "Dog",
                        "name": "Fido"
                    }
                ]
            }
        ]
    }
]

should be equivalent to:

alice = Person(first_name='Alice')
alice.put()
bob = Person(first_name='Bob', parent=alice)
bob.put()
fido = Dog(name='Fido', parent=bob)
fido.put()

You can then retrieve fido with:

fido = Dog.query(ancestor=alice.key).get()

Development

There are two recommended ways to work on this codebase. If you want to keep one and only one App Engine SDK install, you may clone the repository and run the tests by:

$ PYTHONPATH=path/to/appengine/library python setup.py test

Alternatively, this project contains code and support files derived from the testable_appengine project. Testable_appengine was conceived to make it easier to write (and run) tests for Google App Engine applications and to hook your application to Travis CI. In essence, it creates a virtualenv and downloads the most up-to-date SDK and other support tools into it. To use it, you run make. Calling make help will give you a quick list of available make targets:

$ make venv
Running virtualenv with interpreter /usr/bin/python2
New python executable in /export/home/ricardo/projects/appengine-fixture-loader/.env/bin/python2
Also creating executable in /export/home/ricardo/projects/appengine-fixture-loader/.env/bin/python
(...)
‘/export/home/ricardo/projects/appengine-fixture-loader/.env/bin/run_tests.py’ -> ‘/export/home/ricardo/projects/appengine-fixture-loader/.env/lib/google_appengine/run_tests.py’
‘/export/home/ricardo/projects/appengine-fixture-loader/.env/bin/wrapper_util.py’ -> ‘/export/home/ricardo/projects/appengine-fixture-loader/.env/lib/google_appengine/wrapper_util.py’
$ source .env/bin/activate
(.env) $ nosetests
..............
----------------------------------------------------------------------
Ran 14 tests in 2.708s

OK

History

0.1.0 (2014-10-13)

  • First release on GitHub.

0.1.1 (2014-12-4)

  • Add support for multi-kind JSON files

0.1.2 (2014-12-4)

  • Minor fixes

0.1.3 (2014-12-5)

  • Added support for PropertyKey-based child entities

0.1.4 (2015-2-4)

  • Fixed bug in which post-processor was called on every property change

  • Added section on development to README.rst

0.1.5 (2015-2-11)

  • Added __children__ support

  • Added manual key definition through the __id__ attribute

0.1.6 (2015-8-30)

  • Builds if you don’t have curl installed

  • Minor documentation improvements

0.1.7 (2015-11-3)

  • Syntax highlighting on the documentation

  • Coverage analysis using Coveralls

0.1.8 (2016-02-05)

  • New resources/Makefile

0.1.9 (2016-12-19)

  • Replace pep8 with pycodestyle

  • Update current SDK version detection to latest version

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Appengine-Fixture-Loader-0.1.9.tar.gz (23.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file Appengine-Fixture-Loader-0.1.9.tar.gz.

File metadata

File hashes

Hashes for Appengine-Fixture-Loader-0.1.9.tar.gz
Algorithm Hash digest
SHA256 da0868215b34bcbbcf53d6d645fccace74825b49e7cb942a518fd5207f363c25
MD5 c72e4153642e2bb810477c57ae243684
BLAKE2b-256 930a051f49a34d0d5fc7f514d79a218fa35d4c0e7c19ffb9cd6c21a2a2c869dd

See more details on using hashes here.

File details

Details for the file Appengine-Fixture-Loader-0.1.9.macosx-10.11-intel.tar.gz.

File metadata

File hashes

Hashes for Appengine-Fixture-Loader-0.1.9.macosx-10.11-intel.tar.gz
Algorithm Hash digest
SHA256 ff567950c17e0ceb4a534f96712b549d84b921b8ed5995bbcec596fdcbfb4022
MD5 1d45ea9f48f7c30e61f0a3f374d1ef43
BLAKE2b-256 5c2b1b988d9926a05120b6e6008710e9fc5dd676cabc6adfac6ccc6ae4c29a23

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page