Skip to main content

A Python implementation of common apportionment methods

Project description

DOI MIT License PyPi Python versions Build badge Unittests badge

A Python implementation of common apportionment methods

This is a collection of common apportionment methods. Apportionment has two main applications: to assign a fixed number of parliamentary seats to parties (proportionally to their vote count), and to assign representatives in a senate to states (proportionally to their population count). A recommendable overview of apportionment methods can be found in the book "Fair Representation" by Balinski and Young [2].

The following apportionment methods are implemented:

  • the largest remainder method (or Hamilton method)
  • the class of divisor methods including
    • D'Hondt (or Jefferson)
    • Sainte-Laguë (or Webster)
    • Modified Sainte-Laguë (as used e.g. in Norway)
    • Huntington-Hill
    • Adams
  • the quota method [1]

This module supports Python 3.7+.

Installation

Using pip:

pip install apportionment

Latest development version from source:

git clone https://github.com/martinlackner/abcvoting/
python setup.py install

Requirements:

  • Python 3.7+
  • numpy

A simple example

The following example calculates the seat distribution of Austrian representatives in the European Parliament based on the D'Hondt method and the 2019 election results. Parties that received less than 4% are excluded from obtaining seats and are thus excluded in the calculation.

import apportionment.methods as app
parties = ['OEVP', 'SPOE', 'FPOE', 'GRUENE', 'NEOS']
votes = [1305956, 903151, 650114, 532193, 319024]
seats = 18
app.compute("dhondt", votes, seats, parties, verbose=True)

The output is

D'Hondt (Jefferson) method
  OEVP: 7
  SPOE: 5
  FPOE: 3
  GRUENE: 2
  NEOS: 1

which is indeed the official result.

Another example can be found in apportionment/examples/simple.py. We verify results from recent Austrian National Council elections in apportionment/examples/austria.py and from recent elections of the Israeli Knesset in apportionment/examples/israel.py.

References

[1] Balinski, M. L., & Young, H. P. (1975). The quota method of apportionment. The American Mathematical Monthly, 82(7), 701-730.

[2] Balinski, M. L., & Young, H. P. (1982). Fair Representation: Meeting the Ideal of One Man, One Vote. Yale University Press, 1982. (There is a second edition from 2001 by Brookings Institution Press.)

Project details


Release history Release notifications | RSS feed

This version

1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

apportionment-1.0-py3-none-any.whl (6.5 kB view details)

Uploaded Python 3

File details

Details for the file apportionment-1.0-py3-none-any.whl.

File metadata

  • Download URL: apportionment-1.0-py3-none-any.whl
  • Upload date:
  • Size: 6.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for apportionment-1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9a8bb1e8a3b4d94002f4a36552810ec2bc1e8e5f32a4582874743ef017575f1e
MD5 8703ff83b03ce344f264fc1d63635f38
BLAKE2b-256 ac184781cea71cb197f62dc8c0d8d34853c7fe3a9689b81d566cfdc0593bccb4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page