Skip to main content

A simple apriori algorithm python implementation

Project description

Apriori Algorithm Python Implementation

How to use

Install the Pypi package using pip

pip install apriori_python

Then use it like

from apriori_python import apriori
itemSetList = [['eggs', 'bacon', 'soup'],
                ['eggs', 'bacon', 'apple'],
                ['soup', 'bacon', 'banana']]
freqItemSet, rules = apriori(itemSetList, minSup=0.5, minConf=0.5)
print(rules)  
# [[{'beer'}, {'rice'}, 0.6666666666666666], [{'rice'}, {'beer'}, 1.0]]
# rules[0] --> rules[1], confidence = rules[2]

Clone the repo

To run the program with dataset provided and default values for minSupport = 0.5 and minConfidence = 0.5

python apriori.py -f dataset.csv

To run program with dataset and min support and min confidence

python apriori.py -f dataset.csv -s 0.17 -c 0.68

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

apriori_python-1.0.4.tar.gz (3.3 kB view details)

Uploaded Source

Built Distribution

apriori_python-1.0.4-py3-none-any.whl (5.0 kB view details)

Uploaded Python 3

File details

Details for the file apriori_python-1.0.4.tar.gz.

File metadata

  • Download URL: apriori_python-1.0.4.tar.gz
  • Upload date:
  • Size: 3.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.22.0 setuptools/43.0.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.2

File hashes

Hashes for apriori_python-1.0.4.tar.gz
Algorithm Hash digest
SHA256 b2942515a135a9b8b7f1ce2f43b1ccc6384421d5f232b40814456a085e96820b
MD5 2a3d91b2a57aaa9bae373c30cfadf3a3
BLAKE2b-256 4806c024915133b5ed59910a725ac740cd37c9ac99fd5da65a5bb3e4173261cf

See more details on using hashes here.

File details

Details for the file apriori_python-1.0.4-py3-none-any.whl.

File metadata

  • Download URL: apriori_python-1.0.4-py3-none-any.whl
  • Upload date:
  • Size: 5.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.22.0 setuptools/43.0.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.2

File hashes

Hashes for apriori_python-1.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 70f9b6b8ae0f62883108037e3b905516cb3fcb60f9503752caba28cbe38cf628
MD5 f50778940a7caededc301255ce8d7c40
BLAKE2b-256 3494fc3bacb14e6e5c63d24c5a90132185d63c08479cd27a61a0e22dd2b7ed77

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page