Skip to main content

A Python library that implements smooth and easy apriori for association rule mining. Currently limited for maximum 4 items/transaction.

Project description

apriorib1

apriorib1 is a Python library that applies the very famous unsupervised learning algorithm, apriori, for Association Rule Mining(ARM) on a dataset of transaction/purchase logs and shows the accepted association rules.

Currently, this version is limited to a maximum of 4 items in a certain transaction.

Demo

New in this version

  1. Displays stage-wise final itemset as pandas DataFrames.

Demo 2

Installation

Use the package manager pip to install apriorib1.

pip install apriorib1

Quick Start

from apriorib1 import Apriori

data = [['MILK', 'BREAD', 'BISCUIT'],
    ['BREAD', 'MILK', 'BISCUIT', 'CORNFLAKES'],
    ['BREAD', 'TEA', 'BOURNVITA'],
    ['JAM', 'MAGGI', 'BREAD', 'MILK'],
    ['MAGGI', 'TEA', 'BISCUIT'],
    ['BREAD', 'TEA', 'BOURNVITA'],
    ['MAGGI', 'TEA', 'CORNFLAKES'],
    ['MAGGI', 'BREAD', 'TEA', 'BISCUIT'],
    ['JAM', 'MAGGI', 'BREAD', 'TEA'],
    ['BREAD', 'MILK'],
    ['COFFEE', 'COCK', 'BISCUIT', 'CORNFLAKES'],
    ['COFFEE', 'COCK', 'BISCUIT', 'CORNFLAKES'],
    ['COFFEE', 'SUGER', 'BOURNVITA'],
    ['BREAD', 'COFFEE', 'COCK'],
    ['BREAD', 'SUGER', 'BISCUIT'],
    ['COFFEE', 'SUGER', 'CORNFLAKES'],
    ['BREAD', 'SUGER', 'BOURNVITA'],
    ['BREAD', 'COFFEE', 'SUGER'],
    ['BREAD', 'COFFEE', 'SUGER'],
    ['TEA', 'MILK', 'COFFEE', 'CORNFLAKES']]

# Testing the Apriori class
apr = Apriori(records=data,min_sup=2,min_conf=50)
df1,df2,df3,df4 = apr.show_as_df(stage=1),apr.show_as_df(stage=2),apr.show_as_df(stage=3),apr.show_as_df(stage=4)
print("VIEWING THE ITEMSET DATAFRAMES AT THE DIFFERENT STAGES :\nSTAGE 1\n{}\nSTAGE 2\n{}\nSTAGE 3\n{}\nSTAGE 4\n{}".format(df1,df2,df3,df4))
apr.checkAssc()

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

apriorib1-1.0.2.tar.gz (4.1 kB view details)

Uploaded Source

Built Distribution

apriorib1-1.0.2-py3-none-any.whl (5.8 kB view details)

Uploaded Python 3

File details

Details for the file apriorib1-1.0.2.tar.gz.

File metadata

  • Download URL: apriorib1-1.0.2.tar.gz
  • Upload date:
  • Size: 4.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for apriorib1-1.0.2.tar.gz
Algorithm Hash digest
SHA256 4b036fa04dcfa67525dadec8e6e3ba89b947ae44359ff23e82075d47cdaf42a2
MD5 e46fca1073e6728d54f51420ab5dc00e
BLAKE2b-256 1d81901dc87f4b456605d393824aa3646ce9e4fd4c2314afc9f3b877e7d83d3a

See more details on using hashes here.

File details

Details for the file apriorib1-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: apriorib1-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 5.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for apriorib1-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 f8f8a29fdcf680abe83f551b25ece71ae38213fca7c08cb49054f8a3a40dfffe
MD5 d436e13e89d7671e3f4ba0a3489788ff
BLAKE2b-256 c2cb998d95eeeb98795f703c6e9ccf13788109731ae8a93c6813bbec89900de2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page