A Python library that implements smooth and easy apriori for association rule mining. Currently limited for maximum 4 items/transaction.
Project description
apriorib1
apriorib1 is a Python library that applies the very famous unsupervised learning algorithm, apriori, for Association Rule Mining(ARM) on a dataset of transaction/purchase logs and shows the accepted association rules.
Currently, this version is limited to a maximum of 4 items in a certain transaction.
New in this version
- Displays stage-wise final itemset as pandas DataFrames.
Installation
Use the package manager pip to install apriorib1.
pip install apriorib1
Quick Start
from apriorib1 import Apriori
data = [['MILK', 'BREAD', 'BISCUIT'],
['BREAD', 'MILK', 'BISCUIT', 'CORNFLAKES'],
['BREAD', 'TEA', 'BOURNVITA'],
['JAM', 'MAGGI', 'BREAD', 'MILK'],
['MAGGI', 'TEA', 'BISCUIT'],
['BREAD', 'TEA', 'BOURNVITA'],
['MAGGI', 'TEA', 'CORNFLAKES'],
['MAGGI', 'BREAD', 'TEA', 'BISCUIT'],
['JAM', 'MAGGI', 'BREAD', 'TEA'],
['BREAD', 'MILK'],
['COFFEE', 'COCK', 'BISCUIT', 'CORNFLAKES'],
['COFFEE', 'COCK', 'BISCUIT', 'CORNFLAKES'],
['COFFEE', 'SUGER', 'BOURNVITA'],
['BREAD', 'COFFEE', 'COCK'],
['BREAD', 'SUGER', 'BISCUIT'],
['COFFEE', 'SUGER', 'CORNFLAKES'],
['BREAD', 'SUGER', 'BOURNVITA'],
['BREAD', 'COFFEE', 'SUGER'],
['BREAD', 'COFFEE', 'SUGER'],
['TEA', 'MILK', 'COFFEE', 'CORNFLAKES']]
# Testing the Apriori class
apr = Apriori(records=data,min_sup=2,min_conf=50)
df1,df2,df3,df4 = apr.show_as_df(stage=1),apr.show_as_df(stage=2),apr.show_as_df(stage=3),apr.show_as_df(stage=4)
print("VIEWING THE ITEMSET DATAFRAMES AT THE DIFFERENT STAGES :\nSTAGE 1\n{}\nSTAGE 2\n{}\nSTAGE 3\n{}\nSTAGE 4\n{}".format(df1,df2,df3,df4))
apr.checkAssc()
Contributing
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
Please make sure to update tests as appropriate.
License
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file apriorib1-1.0.2.tar.gz
.
File metadata
- Download URL: apriorib1-1.0.2.tar.gz
- Upload date:
- Size: 4.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4b036fa04dcfa67525dadec8e6e3ba89b947ae44359ff23e82075d47cdaf42a2 |
|
MD5 | e46fca1073e6728d54f51420ab5dc00e |
|
BLAKE2b-256 | 1d81901dc87f4b456605d393824aa3646ce9e4fd4c2314afc9f3b877e7d83d3a |
File details
Details for the file apriorib1-1.0.2-py3-none-any.whl
.
File metadata
- Download URL: apriorib1-1.0.2-py3-none-any.whl
- Upload date:
- Size: 5.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f8f8a29fdcf680abe83f551b25ece71ae38213fca7c08cb49054f8a3a40dfffe |
|
MD5 | d436e13e89d7671e3f4ba0a3489788ff |
|
BLAKE2b-256 | c2cb998d95eeeb98795f703c6e9ccf13788109731ae8a93c6813bbec89900de2 |