Skip to main content

A Meshtastic-APRS Gateway

Project description

aprstastic

PyPI - Version PyPI - Python Version


[!WARNING] Legal operation of this software requires an amateur radio license and a valid call sign.

New!

:fire: 2-minute YouTube demo

:fire: Basic position beacons now supported (lat, lon, timestamp)

:fire: Over-the-air discovery and registration now supported. See image below.

:fire: Registrations are now (optionally) beaconed to MESHID-01 to facilitate a global roaming profile.

:fire: Design doc and future plans: DESIGN.md

Introduction

Here is a proof of concept of a Meshtastic to APRS gateway for Meshtastic users with amateur radio licenses. It runs on stock Meshtastic (915MHz, not HAM band or mode), but uses a pre-registered association between Meshtastic device MAC addresses and amateur radio callsign+SSID to keep things properly attributed and compliant with FCC regulations. To this end, operation requires at least two meshtastic devices: one to serve as the gateway, and the others are the clients. The following image demonstrates how operators can register with the gateway:

Example aprstastic registration flow. Start by sending 'aprs?' to any public channel. Wait for a direct message. Reply with !register CALLSIGN-SSID.

In this scenario, once registered, private message to the gateway will be forwarded to APRS with the "from" call sign KK7CMT-8. Likewise, APRS messages addressed to KK7CMT-8 will be routed to operators Meshtastic device via a Meshtastic direct message.

These interactions are demonstrated in the following YouTube video https://www.youtube.com/watch?v=qUvpZUwl-cY

Each gateway mimics an iGate, and can support multiple Meshtastic users, as long as their call signs and devices are pre-registered.

Installation, Configuration, and Running

pip install aprstastic
python -m aprstastic

The first time aprstastic runs, it will create a sample aprstastic.yaml file. Edit the sample, then run it again.

nano ~/.config/aprstastic/aprstastic.yaml
python -m aprstastic

Addressing APRS messages

How does the gateway know the addressee ("to" address) of APRS packets when all Meshtastic messages are addressed to the gateway device?

To address this, we adopt the "CALLSIGN: " convention. Messages should start with the addressee's call sign, followed by a colon. If this is omitted, then the call sign of the addressee is taken to be that of the previous message (i.e., to respond to the previously received message).

As an example, from Meshtastic you could interact with the Winlink gateway (WLNK-1) as follows:

WLNK-1: ?

The reply from Winlink would be:

NOCALL-1: SP, SMS, L, R#, K#, Y#, F#, P, G, A, I, PR, B (? + cmd for more)

You could then simply enter:

L

and it would assume a reply to WLNK-1, producing the following response:

NOCALL-1: 10/11/2024 23:52:30 No messages.

Compliance

aprstastic only allows messages to transit if they are found in the client device-to-callsign mapping, and are thus attributable to a licensed operator. Random messages published on channels like LongFast, or from other devices do not qualify. All messages are unencrypted before they leave Meshtastic, so all APRS traffic is clear text.

Future Plans

The clear weakness of this gateway is the need to register devices in order for the call sign mapping to work. If every node administrator needs to manage this list, then the system will not scale (and maybe this is fine to control traffic). However, one compelling possibility is to create a central registry where, call signs can be registered to nodes, and the gateways could then subscribe to this list. This would allow a degree of roaming without much need for coordination. To support this, all dynamic registrations (!register command) are optionally beaconed to APRS-IS, to facilitate discovery. Such beacons are expected to be rare -- at most once per device.

For more details, and other upcoming features, see DESIGN.md

License

aprstastic is distributed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aprstastic-0.0.1a11.tar.gz (13.6 kB view details)

Uploaded Source

Built Distribution

aprstastic-0.0.1a11-py3-none-any.whl (15.4 kB view details)

Uploaded Python 3

File details

Details for the file aprstastic-0.0.1a11.tar.gz.

File metadata

  • Download URL: aprstastic-0.0.1a11.tar.gz
  • Upload date:
  • Size: 13.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.26.0

File hashes

Hashes for aprstastic-0.0.1a11.tar.gz
Algorithm Hash digest
SHA256 186a24b0c7328ae592ee9bd30ab68fab4e3a1454566d0900ce51fb245990d7ca
MD5 22687db29907c63a6dd56e7ea4c8c5c0
BLAKE2b-256 579b385966c236119fcf11974fcc73683063daf70fa5cd098a6d6aa6ce6c576f

See more details on using hashes here.

File details

Details for the file aprstastic-0.0.1a11-py3-none-any.whl.

File metadata

File hashes

Hashes for aprstastic-0.0.1a11-py3-none-any.whl
Algorithm Hash digest
SHA256 bfea642b9b0d15adcc796ac651136b1c63eea0291f91f5c7d8e412ad109b536a
MD5 f55336fdaf168e558cf5d09a949b0ebf
BLAKE2b-256 8ebb25b1abc8df3ab610dbe0b32bb62d9c6c3aa7e258a150329a531689e11317

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page