Builder for performance-efficient prediction.
Project description
Framework for performance-efficient prediction.
Contact
Feel free to ask questions in telegram t.me/avito-ml
Key Features
Increase RPS (Requests Per Second) for your service
All optimisations in one library
Uses shared memory for transfer big data between processes
Get started
Simple example how to start with aqueduct using aiohttp. For better examples see examples.
from aiohttp import web
from aqueduct import Flow, FlowStep, BaseTaskHandler, BaseTask
class MyModel:
"""This is CPU bound model example."""
def process(self, number):
return sum(i * i for i in range(number))
class Task(BaseTask):
"""Container to send arguments to model."""
def __init__(self, number):
super().__init__()
self.number = number
self.sum = None # result will be here
class SumHandler(BaseTaskHandler):
"""With aqueduct we need to wrap you're model."""
def __init__(self):
self._model = None
def on_start(self):
"""Runs in child process, so memory no memory consumption in parent process."""
self._model = MyModel()
def handle(self, *tasks: Task):
"""List of tasks because it can be batching."""
for task in tasks:
task.sum = self._model.process(task.number)
class SumView(web.View):
"""Simple aiohttp-view handler"""
async def post(self):
number = await self.request.read()
task = Task(int(number))
await self.request.app['flow'].process(task)
return web.json_response(data={'result': task.sum})
def prepare_app() -> web.Application:
app = web.Application()
app['flow'] = Flow(
FlowStep(SumHandler()),
)
app.router.add_post('/sum', SumView)
app['flow'].start()
return app
if __name__ == '__main__':
web.run_app(prepare_app())
Batching
Aqueduct supports the ability to process tasks with batches. Default batch size is one.
import asyncio
import time
from typing import List
import numpy as np
from aqueduct.flow import Flow, FlowStep
from aqueduct.handler import BaseTaskHandler
from aqueduct.task import BaseTask
# this constant needs just for example
TASKS_BATCH_SIZE = 20
class ArrayFieldTask(BaseTask):
def __init__(self, array: np.array, *args, **kwargs):
super().__init__(*args, **kwargs)
self.array = array
self.result = None
class CatDetector:
"""GPU model emulator that predicts the presence of the cat in the image."""
IMAGE_PROCESS_TIME = 0.01
BATCH_REDUCTION_FACTOR = 0.7
OVERHEAD_TIME = 0.02
BATCH_PROCESS_TIME = IMAGE_PROCESS_TIME * TASKS_BATCH_SIZE * BATCH_REDUCTION_FACTOR + OVERHEAD_TIME
def predict(self, images: np.array) -> np.array:
"""Always says that there is a cat in the image.
The image is represented by a one-dimensional array.
The model spends less time for processing batch of images due to GPU optimizations. It's emulated
with BATCH_REDUCTION_FACTOR coefficient.
"""
batch_size = images.shape[0]
if batch_size == 1:
time.sleep(self.IMAGE_PROCESS_TIME)
else:
time.sleep(self.IMAGE_PROCESS_TIME * batch_size * self.BATCH_REDUCTION_FACTOR)
return np.ones(batch_size, dtype=bool)
class CatDetectorHandler(BaseTaskHandler):
def handle(self, *tasks: ArrayFieldTask):
images = np.array([task.array for task in tasks])
predicts = CatDetector().predict(images)
for task, predict in zip(tasks, predicts):
task.result = predict
def get_tasks_batch(batch_size: int = TASKS_BATCH_SIZE) -> List[BaseTask]:
return [ArrayFieldTask(np.array([1, 2, 3])) for _ in range(batch_size)]
async def process_tasks(flow: Flow, tasks: List[ArrayFieldTask]):
await asyncio.gather(*(flow.process(task) for task in tasks))
tasks_batch = get_tasks_batch()
flow_with_batch_handler = Flow(FlowStep(CatDetectorHandler(), batch_size=TASKS_BATCH_SIZE))
flow_with_batch_handler.start()
# checks if no one result
assert not any(task.result for task in tasks_batch)
# task handling takes 0.16 secs that is less than sequential task processing with 0.22 secs
await asyncio.wait_for(
process_tasks(flow_with_batch_handler, tasks_batch),
timeout=CatDetector.BATCH_PROCESS_TIME,
)
# checks if all results were set
assert all(task.result for task in tasks_batch)
await flow_with_batch_handler.stop()
# if we have batch size more than tasks number, we can limit batch accumulation time
# with timeout parameter for processing time optimization
tasks_batch = get_tasks_batch()
flow_with_batch_handler = Flow(
FlowStep(CatDetectorHandler(), batch_size=2*TASKS_BATCH_SIZE, batch_timeout=0.01)
)
flow_with_batch_handler.start()
await asyncio.wait_for(
process_tasks(flow_with_batch_handler, tasks_batch),
timeout=CatDetector.BATCH_PROCESS_TIME + 0.01,
)
await flow_with_batch_handler.stop()
Sentry
The implementation allows you to receive logger events from the workers and the main process. To integrate with __Sentry__, you need to write something like this:
import logging
import os
from raven import Client
from raven.handlers.logging import SentryHandler
from raven.transport.http import HTTPTransport
from aqueduct.logger import log
if os.getenv('SENTRY_ENABLED') is True:
dsn = os.getenv('SENTRY_DSN')
sentry_handler = SentryHandler(client=Client(dsn=dsn, transport=HTTPTransport), level=logging.ERROR)
log.addHandler(sentry_handler)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
aqueduct-1.9.0.tar.gz
(39.2 kB
view hashes)