Skip to main content

Single Particle Data Analysis Suite

Project description

Arachnid

Arachnid is an open source software package written primarily in Python that processes images of macromolecules captured by cryo-electron microscopy (cryo-EM). Arachnid is focused on automating the single-particle reconstruction workflow and can be thought of as two subpackages:

  1. Arachnid Prime

    A SciPy Toolkit (SciKit) that focuses on every step of the single-particle reconstruction workflow up to orientation assignment and classification. This toolkit also includes a set of application scripts and a workflow manager.

  2. pySPIDER

    This subpackage functions as an interface to the SPIDER package. It includes both a library of SPIDER commands and a set of application scripts to run a set of procedures for every step of single-particle reconstruction including orientation assignment but not classification.

Arachnid Prime currently focuses on automating the pre-processing of the image data captured by cryo-EM. For example, Arachnid has the following highlighted applications handle the particle-picking problem:

  • AutoPicker: Automated reference-free particle selection

  • ViCer: Automated unsupervised particle verification

This software is under development by the Frank Lab and is licensed under GPL 2.0 or later.

For more information, see http://www.arachnid.us.

Alternatively, HTML documentation can be built locally using python setup.py build_sphinx, which assumes you have the prerequisite Python libraries. The documents can be found in build/sphinx/html/.

How to cite

The main reference to cite is:

Langlois, R. E., Ho D. N., Frank, J., 2014. Arachnid: Automated Image-processing for Electron Microscopy. In Preparation.

See CITE for more information and downloadable citations.

Dependencies

The required dependencies to build the software are Python >= 2.6, setuptools, Numpy >= 1.3, SciPy >= 0.7, matplotlib>=1.1.0, mpi4py>=1.2.2, scikit-learn, scikit-image, psutil, sqlalchemy, mysql-python, PIL, basemap, FFTW3 or MKL, and both C/C++ and Fortran compilers.

It is also recommended you install NumPy and SciPy with an optimized Blas library such as MKL, ACML, ATLAS or GOTOBlas.

To build the documentation, Sphinx>=1.0.4 is required.

All of these dependencies can be found in a single free binary package: Anaconda.

Install

The prefered method of installation is to use Anaconda:

# If you do not have Anaconda then run the following (assumes bash shell)

wget http://repo.continuum.io/miniconda/Miniconda-3.0.0-Linux-x86_64.sh
sh Miniconda-3.0.0-Linux-x86_64.sh -b -p $PWD/anaconda
export PATH=$PWD/anaconda/bin:$PATH

# If you have anaconda or just installed it, then run

conda install -c https://conda.binstar.org/ezralanglois arachnid

Alternatives:

# Install from downloaded source

$ python setup.py install –prefix=$HOME

# Using Setup tools

$ easy_install arachnid

# Using PIP

$ pip install arachnid

# Using Anaconda

$ conda install -c https://conda.binstar.org/ezralanglois arachnid

Development

You can check out the latest source with the command:

git clone https://github.com/ezralanglois/arachnid/arachnid.git

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arachnid-0.1.7.tar.gz (10.2 MB view details)

Uploaded Source

File details

Details for the file arachnid-0.1.7.tar.gz.

File metadata

  • Download URL: arachnid-0.1.7.tar.gz
  • Upload date:
  • Size: 10.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for arachnid-0.1.7.tar.gz
Algorithm Hash digest
SHA256 9d3c348f44bac3112e0ea6335a2484077f2a78b38e1051264d92ea1cec46d056
MD5 7763fc3fd682ec9510a1f6f20d1a2db0
BLAKE2b-256 9b2e41e9fe04a3dad0616a6b4e16e24d896cd10794efb7a80ee164fdabfcb236

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page