Add your description here
Project description
Arakawa
Overview
Build interactive reports in seconds using Python.
Arakawa makes it simple to build interactive reports in seconds using Python.
Import Arakawa's Python library into your script or notebook and build reports programmatically by wrapping components such as:
- Pandas DataFrames
- Plots from Python visualization libraries such as Bokeh, Altair, Plotly, and Folium
- Markdown and text
- Files, such as images, PDFs, JSON data, etc.
- Interactive forms which run backend Python functions
Arakawa reports are interactive and can also contain pages, tabs, drop downs, and more. Once created, reports can be exported as HTML, shared as standalone files, or embedded into your own application, where your viewers can interact with your data and visualizations.
Getting Started
Check out our Quickstart to build a report in 3m.
Installing Arakawa
pip install arakawa
# or
conda install -c conda-forge
Examples
📊 Share plots, data, and more as reports
Create reports from pandas DataFrames, plots from your favorite libraries, and text.
import altair as alt
from vega_datasets import data
import arakawa as ar
df = data.iris()
fig = (
alt.Chart(df)
.mark_point()
.encode(
x="petalLength:Q",
y="petalWidth:Q",
color="species:N"
)
)
view = ar.Blocks(
ar.Plot(fig),
ar.DataTable(df)
)
ar.save_report(view, path="simple_example.html")
🎛 Layout using interactive blocks
Add dropdowns, selects, grid, pages, and 10+ other interactive blocks.
...
view = ar.Blocks(
ar.Formula("x^2 + y^2 = z^2"),
ar.Group(
ar.BigNumber(
heading="Number of percentage points",
value="84%",
change="2%",
is_upward_change=True
),
ar.BigNumber(
heading="Simple Statistic", value=100
), columns=2
),
ar.Select(
ar.Plot(fig, label="Chart"),
ar.DataTable(df, label="Data")
),
)
ar.save_report(view, path="layout_example.html")
See the documentation for more details.
Acknowledgement
This project is fork of datapane/datapane and original codes are written by StackHut Limited (trading as Datapane).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file arakawa-0.0.1a5.tar.gz
.
File metadata
- Download URL: arakawa-0.0.1a5.tar.gz
- Upload date:
- Size: 174.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 65afb8ce18f9c9aeabc381d61acb8a21c61b5c6f82565a8c2e0acbd6bb9e16e6 |
|
MD5 | 4b291f6c625dcfee45d8ae714f9ed2ee |
|
BLAKE2b-256 | 9d95d66885d522b2d81e6687212ce2cf8f939c697920d77419fe85c154c1be17 |
File details
Details for the file arakawa-0.0.1a5-py3-none-any.whl
.
File metadata
- Download URL: arakawa-0.0.1a5-py3-none-any.whl
- Upload date:
- Size: 68.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aaee74cd95646e3711a1dfe07380cf666720d427d8eb0881c8002984673874de |
|
MD5 | bec4c3140dbb1dfb0f751a115840ff13 |
|
BLAKE2b-256 | a5354beb20355c53192bf264afe1aea3f84a9d8b6fcbb16fb7e6e9a2c3db56a4 |