A project for Ar-Ar geochronology
Project description
ArArPy
ArArPy is a module for the reduction of 40Ar/39Ar geochronologic data.
It packages the whole processing steps, including reading data from local files, blank correction, decay correction, interference reactions correction, age calculation, isochron regression, etc.
The current version supports exported files in Thermo Scientific Qtegra (ISDS) platform software.
ArArPy is written in Python language combined with some open source packages, such as numpy, pandas, os, scipy, pickle, xlrd, xlsxwriter, and json.
Installing from PyPI
ArArPy can be installed via pip from PyPI.
pip install ararpy
API
Class: Sample
new Sample(**kwargs)
__init__(
Doi = "",
RawData = RawData(),
Info = Info(),
SequenceName = [],
SequenceValue = [],
SequenceUnit = [],
NewIntercept = [],
NewBlank = [],
NewParam = [],
SampleIntercept = [],
BlankIntercept = [],
AnalysisDateTime = [],
BlankCorrected = [],
MassDiscrCorrected = [],
DecayCorrected = [],
InterferenceCorrected = [],
CorrectedValues = [],
DegasValues = [],
ApparentAgeValues = [],
IsochronValues = [],
TotalParam = [],
PublishValues = [],
SelectedSequence1 = [],
SelectedSequence2 = [],
UnselectedSequence = [],
IsochronMark = [],
UnknownTable = Table(),
BlankTable = Table(),
CorrectedTable = Table(),
DegasPatternTable = Table(),
PublishTable = Table(),
AgeSpectraTable = Table(),
IsochronsTable = Table(),
TotalParamsTable = Table(),
AgeSpectraPlot = Plot(),
NorIsochronPlot = Plot(),
InvIsochronPlot = Plot(),
KClAr1IsochronPlot = Plot(),
KClAr2IsochronPlot = Plot(),
KClAr3IsochronPlot = Plot(),
ThreeDIsochronPlot = Plot(),
CorrelationPlot = Plot(),
DegasPatternPlot = Plot(),
AgeDistributionPlot = Plot(),
)
-
Doi
type: str ""
default: ""
Instance id, created by uuid.uuid4().hex.
-
RawData
type: RawData()
RawData instance, contains information and data of the imported raw files.
-
Info
type: Info()
Info instance. it may contain:
attr_name
type: str
Infoid
type: str
0name
type: str
infotype
type: str
Infosample
Info instance.name
type: str
Sample name.material
type: str
Sample material.location
type: str
Sample location.
researcher
Info instancename
type: str
Researcher name.email
type: str
Researcher email.
laboratory
Info instancename
type: str
Laboratory name.email
type: str
Laboratory email.addr
type: str
Laboratory address.analyst
type: str
Laboratory analyst.info
type: str
Laboratory info.
results
Info instancename
type: str
RESULTSage_plateau
type: List[float]
Age plateau.age_spectra
type: List[float]
Age spectra.isochron
type: List[float]
Isochron.isochron_F
type: List[float]
Isochron F.isochron_age
type: List[float]
Isochron age.J
type: List[float]
J value, a list of value and error.plateau_F
type: List[float]
Plateau F.plateau_age
type: List[float]
Plateau age.total_F
type: List[float]
total F.total_age
type: List[float]
total age.
reference
Info instancename
type: str
REFERENCE.doi
type: str
Paper doi.journal
type: str
Journal name.
-
SequenceName = []
type: List[str]
Sequence name list.
-
SequenceValue = []
type: List[str]
Sequence label list.
-
SequenceUnit = []
type: List[str]
Sequence unit list.
-
NewIntercept = []
type: List[str]
New intercept list, 2d list, shape = (10, n), n is the number of sample sequences.
-
NewBlank = []
type: List[str]
New Blank list, 2d list, shape = (10, n), n is the number of sample sequences.
-
NewParam = []
type: List[str]
New Param list, 2d list, shape = (123, n), n is the number of sample sequences.
-
SampleIntercept = []
type: List[str]
Unknown intercept list, 2d list, shape = (10, n), n is the number of sample sequences.
-
BlankIntercept = []
type: List[str]
Blank intercept list, 2d list, shape = (10, n), n is the number of sample sequences.
-
AnalysisDateTime = []
type: List[str]
Analysis DateTime list, 1d list, length equals the number of sample sequences.
-
BlankCorrected = []
type: List[str]
Blank-corrected list, 2d list, shape = (10, n), n is the number of sample sequences.
-
MassDiscrCorrected = []
type: List[str]
Mass discrimination corrected list, 2d list, shape = (10, n), n is the number of sample sequences.
-
DecayCorrected = []
type: List[str]
Decay corrected list, 2d list, shape = (10, n), n is the number of sample sequences.
-
InterferenceCorrected = []
type: List[str]
Interference corrected values, 2d list, shape = (10, n), n is the number of sample sequences.
-
CorrectedValues = []
type: List[str]
Corrected values, 2d list, shape = (10, n), n is the number of sample sequences.
-
DegasValues = []
type: List[str]
Degas values, 2d list, shape = (10, n), n is the number of sample sequences.
-
ApparentAgeValues = []
type: List[str]
Degas values, 2d list, shape = (10, n), n is the number of sample sequences.
-
IsochronValues = []
type: List[str]
Isochron ratio values, 2d list, shape = (39, 0)
-
TotalParam = []
type: List[str]
Parameters values, 2d list, shape = (123, 0)
-
PublishValues = []
type: List[str]
Publish values, 2d list, shape = (11, 0)
-
SelectedSequence1 = []
type: List[str]
Selected sequence values of set 1, 1d list, shape = (n, ), n is the number of set 1 selected sequences
-
SelectedSequence2 = []
type: List[str]
Selected sequence values of set 2, 1d list, shape = (n, ), n is the number of set 2 selected sequences
-
UnselectedSequence = []
type: List[str]
Unselected sequence values, 1d list, shape = (n, ), n is the number of unselected sequences
-
IsochronMark = []
type: List[str]
Isochron mark values, 1d list, shape = (n, ), n is the number of whole sequences
-
UnknownTable = Table()
type: Table
Unknown intercept Table.
-
BlankTable = Table()
type: Table
Blank intercept Table.
-
CorrectedTable = Table()
type: Table
Corrected values Table.
-
DegasPatternTable = Table()
type: Table
Degas values Table.
-
PublishTable = Table()
type: Table
Publish values Table.
-
AgeSpectraTable = Table()
type: Table
Age spectra values Table.
-
IsochronsTable = Table()
type: Table
Isochron values Table.
-
TotalParamsTable = Table()
type: Table
Total parameters Table.
-
AgeSpectraPlot = Plot()
type: Plot
Age spectra Plot.
-
NorIsochronPlot = Plot()
type: Plot
Normal Isochron Plot.
-
InvIsochronPlot = Plot()
type: Plot
Inverse Isochron Plot.
-
KClAr1IsochronPlot = Plot()
type: Plot
K-Cl-Ar 1 Isochron Plot.
-
KClAr2IsochronPlot = Plot()
type: Plot
K-Cl-Ar 2 Isochron Plot.
-
KClAr3IsochronPlot = Plot()
type: Plot
K-Cl-Ar 3 Isochron Plot.
-
ThreeDIsochronPlot = Plot()
type: Plot
Three dimensional isochron Plot.
-
CorrelationPlot = Plot()
type: Plot
Correlation Plot.
-
DegasPatternPlot = Plot()
type: Plot
Degas pattern Plot.
-
AgeDistributionPlot = Plot()
type: Plot
Age distribution Plot.
name()
Get sample name.
doi()
Get sample doi.
sample()
Get sample info.
researcher()
Get researcher info.
laboratory()
Get laboratory info.
results()
Get results, a ArArBasic class.
For example:
{
'isochron': {
'normal': {
'set1': {'k': nan, 'sk': nan, 'm1': nan, 'sm1': nan, 'MSWD': nan,
'abs_conv': nan, 'iter': nan, 'mag': nan, 'R2': nan,
'Chisq': nan, 'Pvalue': nan, 'rs': nan, 'age': nan,
's1': nan, 's2': nan, 's3': nan, 'conv': nan, 'initial': nan,
'sinitial': nan, 'F': nan, 'sF': nan},
'set2': {'k': nan, 'sk': nan, 'm1': nan, 'sm1': nan, 'MSWD': nan, ...},
'unselected': {'k': nan, 'sk': nan, 'm1': nan, 'sm1': nan, 'MSWD': nan, ...}
},
'inverse': {
'set1': {'k': nan, 'sk': nan, 'm1': nan, 'sm1': nan, 'MSWD': nan, ...},
'set2': {'k': nan, 'sk': nan, 'm1': nan, 'sm1': nan, 'MSWD': nan, ...},
'unselected': {'k': nan, 'sk': nan, 'm1': nan, 'sm1': nan, 'MSWD': nan, ...}
},
'cl_1': {
'set1': {'k': nan, 'sk': nan, 'm1': nan, 'sm1': nan, 'MSWD': nan, ...},
'set2': {'k': nan, 'sk': nan, 'm1': nan, 'sm1': nan, 'MSWD': nan, ...},
'unselected': {'k': nan, 'sk': nan, 'm1': nan, 'sm1': nan, 'MSWD': nan, ...}
},
'cl_2': {
'set1': {'k': nan, 'sk': nan, 'm1': nan, 'sm1': nan, 'MSWD': nan, ...},
'set2': {'k': nan, 'sk': nan, 'm1': nan, 'sm1': nan, 'MSWD': nan, ...},
'unselected': {'k': nan, 'sk': nan, 'm1': nan, 'sm1': nan, 'MSWD': nan, ...}
},
'cl_3': {
'set1': {'k': nan, 'sk': nan, 'm1': nan, 'sm1': nan, 'MSWD': nan, ...},
'set2': {'k': nan, 'sk': nan, 'm1': nan, 'sm1': nan, 'MSWD': nan, ...},
'unselected': {'k': nan, 'sk': nan, 'm1': nan, 'sm1': nan, 'MSWD': nan, ...}
},
'three_d': {'set1': {'k': nan, 'sk': nan, 'm1': nan, 'sm1': nan, 'MSWD': nan, ...},
'set2': {'k': nan, 'sk': nan, 'm1': nan, 'sm1': nan, 'MSWD': nan, ...},
'unselected': {'k': nan, 'sk': nan, 'm1': nan, 'sm1': nan, 'MSWD': nan, ...}}
},
'age_plateau': {
'set1': {'F': nan, 'sF': nan, 'Num': nan, 'MSWD': nan, 'Chisq': nan, 'Pvalue': nan,
'age': nan, 's1': nan, 's2': nan, 's3': nan, 'Ar39': nan, 'rs': nan},
'set2': {'F': nan, 'sF': nan, 'Num': nan, 'MSWD': nan, 'Chisq': nan, 'Pvalue': nan, ...},
'unselected': {'F': nan, 'sF': nan, 'Num': nan, 'MSWD': nan, 'Chisq': nan, 'Pvalue': nan, ...}
}
}
sequence()
Get sequence, a ArArBasic class.
sample.sequence() = ArArBasic(
size=len(_smp.SequenceName), name=_smp.SequenceName,
value=_smp.SequenceValue, unit=_smp.SequenceUnit,
mark=ArArBasic(
size=len(_smp.IsochronMark),
set1=ArArBasic(
size=sum([1 if i == 1 else 0 for i in _smp.IsochronMark]),
index=[index for index, _ in enumerate(_smp.IsochronMark) if _ == 1],
),
set2=ArArBasic(
size=sum([1 if i == 2 else 0 for i in _smp.IsochronMark]),
index=[index for index, _ in enumerate(_smp.IsochronMark) if _ == 2],
),
unselected=ArArBasic(
size=sum([0 if i == 2 or i == 1 else 1 for i in _smp.IsochronMark]),
index=[index for index, _ in enumerate(_smp.IsochronMark) if _ != 1 and _ != 2],
),
value=_smp.IsochronMark,
)
)
initial()
Initialize sample instance.
set_selection(index, mark)
args: index, mark
index: int, index of the selected data point
mark: 1 or 2 for set 1 or set 2
update_table(data, table_id)
Update table data.
unknown()
Get sample intercept data.
blank()
Get blank intercept data.
parameters()
Get parameters data.
corrected()
Get corrected data.
degas()
Get degas data.
isochron()
Get isochron data.
apparent_ages()
Get apparent ages data.
publish()
Get publish data.
corr_blank()
Do correction for blank.
corr_massdiscr()
Do correction for mass discrimination.
corr_decay()
Do correction for decay.
corr_ca()
Do correction for ca.
corr_k()
Do correction for k.
corr_cl()
Do correction for cl.
corr_atm()
Do correction for atm.
corr_r()
Do calculation of radiogenic 40Ar.
corr_ratio()
Do calculation of ratios.
set_params()
Set parameters
set_info()
Set sample info
recalculate()
Re-calculate
plot_init()
Re-calculate initialize
plot_isochron()
Re-calculate plot isochron
plot_age_plateau()
Re-calculate plot age plateau
plot_normal()
Re-calculate plot normal isochron
plot_inverse()
Re-calculate plot inverse isochron
plot_cl_1()
Re-calculate plot K-Cl-Ar correlation 1
plot_cl_2()
Re-calculate plot K-Cl-Ar correlation 2
plot_cl_3()
Re-calculate plot K-Cl-Ar correlation 3
plot_3D()
Re-calculate plot 3D diagram
show_data()
Show all data
Testing
1. Running the test function from a Python terminal
>>> import ararpy as ap
>>> ap.test()
Running: ararpy.test()
============= Open an example .arr file =============
file_path = 'your_dir\\examples\\22WHA0433.arr'
sample = from_arr(file_path=file_path)
sample.name() = '22WHA0433 -PFI'
sample.help = 'builtin methods:\n __class__\t__delattr__\t__dir__\t__eq__\t__format__\t__ge__\t__getattribute__\t__gt__\t__hash__\t__init__\t__init_subclass__\t__le__\t__lt__\t__ne__\t__new__\t__reduce__\t__reduce_ex__\t__repr__\t__setattr__\t__sizeof__\t__str__\t__subclasshook__\ndunder-excluded methods:\n apparent_ages\tblank\tcalc_ratio\tcorr_atm\tcorr_blank\tcorr_ca\tcorr_cl\tcorr_decay\tcorr_k\tcorr_massdiscr\tcorr_r\tdoi\tinitial\tisochron\tlaboratory\tname\tparameters\tpublish\trecalculation\tresearcher\tresults\tsample\tsequence\tset_selection\tunknown\tupdate_table\n'
sample.parameters() = <ararpy.ArArData object at 0x0000027F7FBEC9D0>
sample.parameters().to_df() =
0 1 2 3 4 5 ... 117 118 119 120 121 122
0 298.56 0.0 0.018 0.0063 0.1885 0.0 ... 0.31 298.56 0.31 1 1 1
1 298.56 0.0 0.018 0.0063 0.1885 0.0 ... 0.31 298.56 0.31 1 1 1
2 298.56 0.0 0.018 0.0063 0.1885 0.0 ... 0.31 298.56 0.31 1 1 1
3 298.56 0.0 0.018 0.0063 0.1885 0.0 ... 0.31 298.56 0.31 1 1 1
4 298.56 0.0 0.018 0.0063 0.1885 0.0 ... 0.31 298.56 0.31 1 1 1
... ... ... ... ... ... ... ... ... ... ... ... ... ...
22 298.56 0.0 0.018 0.0063 0.1885 0.0 ... 0.31 298.56 0.31 1 1 1
23 298.56 0.0 0.018 0.0063 0.1885 0.0 ... 0.31 298.56 0.31 1 1 1
24 298.56 0.0 0.018 0.0063 0.1885 0.0 ... 0.31 298.56 0.31 1 1 1
25 298.56 0.0 0.018 0.0063 0.1885 0.0 ... 0.31 298.56 0.31 1 1 1
26 298.56 0.0 0.018 0.0063 0.1885 0.0 ... 0.31 298.56 0.31 1 1 1
2. Example 1: create an empty sample
>>> import ararpy as ap
>>> sample = ap.from_empty() # create new sample instance
>>> print(sample.show_data())
# Sample Name:
#
# Doi:
# 9a43b5c1a99747ee8608676ac31814da # uuid
# Corrected Values:
# Empty DataFrame
# Columns: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# Index: []
# Parameters:
# Empty DataFrame
# Columns: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
# 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
# 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
# 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, ...]
# Index: []
#
# [0 rows x 123 columns]
# Isochron Values:
# Empty DataFrame
# Columns: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
# 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46]
# Index: []
# Apparent Ages:
# Empty DataFrame
# Columns: [0, 1, 2, 3, 4, 5, 6, 7]
# Index: []
# Publish Table:
# Empty DataFrame
# Columns: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# Index: []
3. Example 2: change data point selection and recalculate
>>> import ararpy as ap
>>> import os
>>> example_dir = os.path.join(os.path.dirname(os.path.abspath(ap.__file__)), r'examples')
>>> file_path = os.path.join(example_dir, r'22WHA0433.arr')
>>> sample = ap.from_arr(file_path)
# normal isochron age
>>> print(f"{sample.results().isochron.inverse.set1.age = }")
# sample.results().isochron.inverse.set1.age = 163.10336210925516
# check current data point selection
>>> print(f"{sample.sequence().mark.value}")
# [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
>>> print(f"{sample.sequence().mark.set1.index}")
# [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]
# change data point selection
>>> sample.set_selection(10, 1)
# check new data point selection
>>> print(f"{sample.sequence().mark.set1.index}")
# [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]
# recalculate
>>> sample.recalculate(re_plot=True)
# check new results
>>> print(f"{sample.results().isochron.inverse.set1.age = }")
# sample.results().isochron.inverse.set1.age = 164.57644271385772
Classes
Info
Plot
Sample
Table
class Info(builtins.object)
| Info(id='', name='', type='Info', **kwargs)
|
| Methods defined here:
|
| __init__(self, id='', name='', type='Info', **kwargs)
| Initialize self. See help(type(self)) for accurate signature.
|
| ----------------------------------------------------------------------
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
class Plot(builtins.object)
| Plot(id='', type='', name='', data=None, info=None, **kwargs)
|
| Methods defined here:
|
| __init__(self, id='', type='', name='', data=None, info=None, **kwargs)
| Initialize self. See help(type(self)) for accurate signature.
|
| ----------------------------------------------------------------------
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
|
| ----------------------------------------------------------------------
| Data and other attributes defined here:
|
| Axis = <class 'sample.Plot.Axis'>
|
| BasicAttr = <class 'sample.Plot.BasicAttr'>
|
| Label = <class 'sample.Plot.Label'>
|
| Set = <class 'sample.Plot.Set'>
|
| Text = <class 'sample.Plot.Text'>
class Sample(builtins.object)
| Sample(**kwargs)
|
| Methods defined here:
|
| __init__(self, **kwargs)
| Initialize self. See help(type(self)) for accurate signature.
|
| apparent_ages(self)
|
| blank(self)
|
| calc_ratio(self)
|
| corr_atm(self)
|
| corr_blank(self)
|
| corr_ca(self)
|
| corr_cl(self)
|
| corr_decay(self)
|
| corr_k(self)
|
| corr_massdiscr(self)
|
| corr_r(self)
|
| corrected(self)
|
| doi(self)
|
| degas(self)
|
| initial(self)
|
| isochron(self)
|
| laboratory(self)
|
| name(self)
|
| parameters(self)
|
| publish(self)
|
| recalculation(self)
|
| researcher(self)
|
| results(self)
|
| sample(self)
|
| sequence(self)
|
| set_selection(self)
|
| show_data(self)
|
| unknown(self)
|
| update_table(self)
|
| ----------------------------------------------------------------------
| Readonly properties defined here:
|
| version
|
| ----------------------------------------------------------------------
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
class Table(builtins.object)
| Table(id='', name='Table', colcount=None, rowcount=None, header=None, data=None, coltypes=None, textindexs=None, numericindexs=None, **kwargs)
|
| Methods defined here:
|
| __init__(self, id='', name='Table', colcount=None, rowcount=None, header=None, data=None, coltypes=None, textindexs=None, numericindexs=None, **kwargs)
| Initialize self. See help(type(self)) for accurate signature.
|
| ----------------------------------------------------------------------
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ararpy-0.0.24.tar.gz
.
File metadata
- Download URL: ararpy-0.0.24.tar.gz
- Upload date:
- Size: 2.6 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2c0c32d9b256e76a44964c42c404e9fdaf11381c76d55dcc680d218e3d47b7d9 |
|
MD5 | e44f59eabb2d4a635141c331202d6e8d |
|
BLAKE2b-256 | e44cd93f512b07f0d74089c486d03dbe3cb78b74cfca76d236491519c6ada870 |
File details
Details for the file ararpy-0.0.24-py3-none-any.whl
.
File metadata
- Download URL: ararpy-0.0.24-py3-none-any.whl
- Upload date:
- Size: 2.6 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 801d3004197325286d39c2d3cc15a374c257028508dd1b1a961191ee51682aad |
|
MD5 | 7fef5bf6516d20469d0388d35902aaa5 |
|
BLAKE2b-256 | 1073a5b6099079d29c063dfd724f299dc703badba7a70801fdc484b60f58f789 |