This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

Arbalest is a Python data pipeline orchestration library for Amazon S3 and Amazon Redshift. It takes care of the heavy lifting of making data queryable at scale in AWS.

It takes care of:

  • Ingesting data into Amazon Redshift
  • Schema creation and validation
  • Creating highly available and scalable data import strategies
  • Generating and uploading prerequisite artifacts for import
  • Running data import jobs
  • Orchestrating idempotent and fault tolerant multi-step ETL pipelines with SQL

Why Arbalest?

  • Lightweight library over heavyweight frameworks that can be composed with existing data tools
  • Python is a de facto lingua franca for data science
  • Configuration as code
  • Batteries included, for example, strategies for ingesting time series or sparse data (arbalest.pipeline), or integration with an existing pipeline topology (arbalest.contrib)

Use Cases

Arbalest is not a MapReduce framework, but rather designed to make Amazon Redshift (and all its strengths) easy to use with typical data workflows and tools. Here are a few examples:

  • You are already using a MapReduce framework to process data in S3. Arbalest could make the results of an Elastic MapReduce job queryable with SQL in Redshift. You can then hand off to Arbalest to define additional ETL in plain old SQL.
  • You treat S3 as a catch all data sink, perhaps persisting JSON messages or events from a message system like Kafka or RabbitMQ. Arbalest can expose some or all of this data into a data warehouse using Redshift. The ecosystem of SQL is now available for dashboards, reports, ad-hoc analysis.
  • You have complex pipelines that could benefit from a fast, SQL queryable data sink. Arbalest has support out of the box (arbalest.contrib) to integrate with tools like Luigi to be part of a multi-dependency, multi-step pipeline topology.

Getting Started

Getting started is easy with pip:

pip install arbalest

Examples of Arbalest pipeline are in examples/. An overview of concepts and classes are below.

Note

Arbalest depends on psycopg2. However, installing psycopg2 on Windows may not be straight forward.

To install psycopg2 on Windows:

64 bit Python installation:

pip install -e git+https://github.com/nwcell/psycopg2-windows.git@win64-py27#egg=psycopg2

32 bit Python installation:

pip install -e git+https://github.com/nwcell/psycopg2-windows.git@win32-py27#egg=psycopg2

Pipelines

Arbalest orchestrates data loading using pipelines. Each Pipeline can have one or many steps that are made up of three parts:

metadata: Path in an S3 bucket to store information needed for the copy process.

source: Path in an S3 bucket where data to be copied from is located consisting of JSON object files:

{ "id": "66bc8153-d6d9-4351-bada-803330f22db7", "someNumber": 1 }

schema: Definition of JSON objects to map into Redshift rows.

Schemas

A schema is defined using a JsonObject mapper which consists of one or many Property declarations. By default the name of the JSON property is used as the column, but can be set to a custom column name. Column names have a maximum length of 127 characters. Column names longer than 127 characters will be truncated. Nested properties will create a default column name delimited by an underscore.

Example JSON Object (whitespace for clarity):

{
  "id": "66bc8153-d6d9-4351-bada-803330f22db7",
  "someNumber": 1,
  "child" : {
    "someBoolean": true
  }
}

Example Schema:

JsonObject('destination_table_name',
    Property('id', 'VARCHAR(36)'),
    Property('someNumber', 'INTEGER', 'custom_column_name'),
    Property('child', Property('someBoolean', 'BOOLEAN')))

Copy Strategies

The S3CopyPipeline supports different strategies for copying data from S3 to Redshift.

Bulk copy

Bulk copy imports all keys in an S3 path into a Redshift table using a staging table. By dropping and reimporting all data, duplication is eliminated. This type of copy is useful for data that does not change very often or will only be ingested once (e.g. immutable time series).

Manifest copy

A manifest copy imports all keys in an S3 path into a Redshift table using a manifest. In addition, a journal of successfully imported objects is persisted to the metadata path. Subsequent runs of this copy step will only copy S3 keys that do not exist in the journal. This type of copy is useful for data in a path that changes often.

Example data copies:

#!/usr/bin/env python
import psycopg2
from arbalest.configuration import env
from arbalest.redshift import S3CopyPipeline
from arbalest.redshift.schema import JsonObject, Property

if __name__ == '__main__':
    pipeline = S3CopyPipeline(
        aws_access_key_id=env('AWS_ACCESS_KEY_ID'),
        aws_secret_access_key=env('AWS_SECRET_ACCESS_KEY'),
        bucket=env('BUCKET_NAME'),
        db_connection=psycopg2.connect(env('REDSHIFT_CONNECTION')))

    pipeline.bulk_copy(metadata='path_to_save_pipeline_metadata',
                       source='path_of_source_data',
                       schema=JsonObject('destination_table_name',
                                         Property('id', 'VARCHAR(36)'),
                                         Property('someNumber', 'INTEGER',
                                                  'custom_column_name')))

    pipeline.manifest_copy(metadata='path_to_save_pipeline_metadata',
                           source='path_of_incremental_source_data',
                           schema=JsonObject('incremental_destination_table_name',
                                             Property('id', 'VARCHAR(36)'),
                                             Property('someNumber', 'INTEGER',
                                                      'custom_column_name')))

    pipeline.run()

SQL

Pipelines can also have arbitrary SQL steps. Each SQL step can have one or many statements which are executed in a transaction, for example, orchestrating additional ETL (extract, transform, and load). Expanding on the previous example:

#!/usr/bin/env python
import psycopg2
from arbalest.configuration import env
from arbalest.redshift import S3CopyPipeline
from arbalest.redshift.schema import JsonObject, Property

if __name__ == '__main__':
    pipeline = S3CopyPipeline(
        aws_access_key_id=env('AWS_ACCESS_KEY_ID'),
        aws_secret_access_key=env('AWS_SECRET_ACCESS_KEY'),
        bucket=env('BUCKET_NAME'),
        db_connection=psycopg2.connect(env('REDSHIFT_CONNECTION')))

    pipeline.bulk_copy(metadata='path_to_save_pipeline_metadata',
                       source='path_of_source_data',
                       schema=JsonObject('destination_table_name',
                                         Property('id', 'VARCHAR(36)'),
                                         Property('someNumber', 'INTEGER',
                                                  'custom_column_name')))

    pipeline.manifest_copy(metadata='path_to_save_pipeline_metadata',
                           source='path_of_incremental_source_data',
                           schema=JsonObject('incremental_destination_table_name',
                                             Property('id', 'VARCHAR(36)'),
                                             Property('someNumber', 'INTEGER',
                                                      'custom_column_name')))

    pipeline.sql(('SELECT someNumber + %s '
                  'INTO some_olap_table FROM destination_table_name', 1),
                 ('SELECT * INTO destination_table_name_copy '
                  'FROM destination_table_name'))

    pipeline.run()

Orchestration Helpers

Included in this project are a variety of orchestration helpers to assist with the creation of pipelines. These classes are defined in the arbalest.pipeline and arbalest.contrib modules.

Sorted Data Sources

Assuming source data is stored in a sortable series of directories, S3SortedDataSources facilitates the retrieval of S3 paths in a sequence for import, given a start and/or end. In addition, it has methods to mark a cursor in an S3 persisted journal.

Examples of data stored as a sorted series

Sequential integers:

s3://bucket/child/1/*
s3://bucket/child/2/*
s3://bucket/child/3/*

Time series:

s3://bucket/child/2015-01-01/*
s3://bucket/child/2015-01-02/*
s3://bucket/child/2015-01-03/*
s3://bucket/child/2015-01-04/00/*

Example of sorted data source class

S3SortedDataSources(
            metadata='',
            source='child',
            bucket=bucket,
            start=env('START'),
            end=env('END'))

Time Series

SqlTimeSeriesImport implements a bulk copy and update strategy of data from a list of time series sources from S3SortedDataSources into an existing target table.

Example time series import from an S3 time series topology, ingesting a day of objects

Time series path topology:

s3://bucket/child/2015-01-01/*
s3://bucket/child/2015-01-02/*
ExamplePipeline(S3CopyPipeline):
    def __init__(self,
             aws_access_key_id,
             aws_secret_access_key,
             bucket,
             db_connection):
        super(ExamplePipeline, self).__init__(
            aws_access_key_id,
            aws_secret_access_key,
            bucket,
            db_connection)

        # Create table to ingest data into if it does not exist
        self.sql('CREATE target_table IF NOT EXISTS target_table(id VARCHAR(36), someNumber INTEGER, timestamp TIMESTAMP);')

        time_series = SqlTimeSeriesImport(
            destination_table='target_table',
            update_date='2015-01-01', # Replace existing events, if any, after this timestamp
            sources=S3SortedDataSources(
                        metadata='',
                        source='child',
                        bucket=bucket,
                        start='2015-01-01',
                        end='2015-01-02'),
            Property('id', 'VARCHAR(36)'),
            Property('someNumber', 'INTEGER'),
            Property('timestamp', 'TIMESTAMP'))

        # Populate target_table using a bulk copy per day
        time_series.bulk_copy(
            pipeline=self,
            metadata='',
            max_error=1000, # Maximum errors tolerated by Redshift COPY
            order_by_column='timestamp') # Use column named timestamp to sort by and replace existing events, if any

Luigi

PipelineTask wraps any arbalest.core.Pipeline into a Luigi Task. This allows for the composition of workflows with dependency graphs, for example, data pipelines that are dependent on multiple steps or other pipelines. Luigi then takes care of the heavy lifting of scheduling and executing multistep pipelines.

License

Arbalest is licensed under the MIT License.

Authors and Contributors

Arbalest was built at Dwolla, primarily by Fredrick Galoso. Initial support for Luigi and contributions to orchestration helpers by Hayden Goldstien. We gladly welcome contributions and feedback. If you are using Arbalest we would love to know.

Release History

Release History

1.6.2

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.6.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.6.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
arbalest-1.6.2.tar.gz (13.0 kB) Copy SHA256 Checksum SHA256 Source Oct 27, 2015

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting