Skip to main content

High performance simulation of networks of multicompartment neurons.

Project description

The Arbor Python package is a wrapper around the high-performance C++ library Arbor, for constructing and running simulations multi-compartment neuron models, from single cell models to large networks.

Documentation is available online at Read the Docs.

Submit a ticket if you have any questions or want help.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arbor-0.7.tar.gz (15.0 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

arbor-0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

arbor-0.7-cp310-cp310-macosx_10_15_universal2.whl (8.2 MB view details)

Uploaded CPython 3.10macOS 10.15+ universal2 (ARM64, x86-64)

arbor-0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

arbor-0.7-cp39-cp39-macosx_10_15_universal2.whl (8.2 MB view details)

Uploaded CPython 3.9macOS 10.15+ universal2 (ARM64, x86-64)

arbor-0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

arbor-0.7-cp38-cp38-macosx_10_15_universal2.whl (8.2 MB view details)

Uploaded CPython 3.8macOS 10.15+ universal2 (ARM64, x86-64)

arbor-0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

File details

Details for the file arbor-0.7.tar.gz.

File metadata

  • Download URL: arbor-0.7.tar.gz
  • Upload date:
  • Size: 15.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.2

File hashes

Hashes for arbor-0.7.tar.gz
Algorithm Hash digest
SHA256 2f24d9169358432dda340ebd7f8be78ec7d9167096fb9e1983717a130d8c8ae3
MD5 28194dc3902b27a71eef0411d1b29890
BLAKE2b-256 5cad8aa250acfb805da06f5f9e29f3b409ebe3667f4d1285563bdfdef7bc4e11

See more details on using hashes here.

File details

Details for the file arbor-0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arbor-0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a1544eea9707d6478825e88521e263bcd4b2954009ff9b6afa12033fa68199ec
MD5 d232f08e28048be282dedf39b0ea326e
BLAKE2b-256 e3dd99afe1a9e8ce916472d8b76dd3ba46816598d0dc7327940ebb0f4a9f8579

See more details on using hashes here.

File details

Details for the file arbor-0.7-cp310-cp310-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for arbor-0.7-cp310-cp310-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 3dc1e80f8da5131f708fbccf010c5cf853432479c3dcbf4569e5116cdac3d09d
MD5 a55bb04b131a421560d338be18181a86
BLAKE2b-256 d13564844eaa981240b54d86227328328c3327e3f4de86bdae206a983f9d96f7

See more details on using hashes here.

File details

Details for the file arbor-0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arbor-0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0bb9b43db2c783ec7d6726874445da014f21b39e30e89ffaa8670025b7210d2e
MD5 3b4ef9a000f1659cc2d7c7acdf529037
BLAKE2b-256 0646650639a1f98319168106534828d24b7c212ecc825f5f4d8e1d4908c804bf

See more details on using hashes here.

File details

Details for the file arbor-0.7-cp39-cp39-macosx_10_15_universal2.whl.

File metadata

  • Download URL: arbor-0.7-cp39-cp39-macosx_10_15_universal2.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.9, macOS 10.15+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.2

File hashes

Hashes for arbor-0.7-cp39-cp39-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 95f4c99965e17f30f83fd2c0ef8adf02b09cb5b08898f2e5167f7c1d67785725
MD5 d3c5385aa4620f2fb6e0240084ebc669
BLAKE2b-256 1ecf2f61c9fce8fe59bb595e833de762a99c2f4b87b8acbe1dc1dbaecd2ce65b

See more details on using hashes here.

File details

Details for the file arbor-0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arbor-0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3a9ae6f60e7ec24f2dd05e4ae83746d0522c773510943aa40db4a6a442dbf6e
MD5 7adb2569bd9935964591f2ffdf53785c
BLAKE2b-256 60d50790aceb9f55bc5eac911e92a2ccc5ecb0e4457ecf6f90a69a47a8cca1be

See more details on using hashes here.

File details

Details for the file arbor-0.7-cp38-cp38-macosx_10_15_universal2.whl.

File metadata

  • Download URL: arbor-0.7-cp38-cp38-macosx_10_15_universal2.whl
  • Upload date:
  • Size: 8.2 MB
  • Tags: CPython 3.8, macOS 10.15+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.2

File hashes

Hashes for arbor-0.7-cp38-cp38-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 d4717a686e59e0d0f87a830a712ad9c14a0e5c6aea1a696ec73034c546f607bb
MD5 491353f0c5ab553975e603ae0f1578cb
BLAKE2b-256 6bfb90e83d98742cf16c38977ed5e20594ce3ee348cee413acd200ba0b1a4247

See more details on using hashes here.

File details

Details for the file arbor-0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arbor-0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7169958243eeec60f51dd37c187e34e3e65d487f13b271ab505696a1bb5bead2
MD5 00fae3637d4445cdf08bb8172a76894f
BLAKE2b-256 804e05839da98676c33af1b6af36641b0fc816c396629bc7cdb95c7f3b8cb428

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page