Skip to main content

ARCH for Python

Project description

arch

arch

Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used to improve performance)

Metric
Latest Release PyPI version
conda-forge version
Continuous Integration Build Status
Appveyor Build Status
Coverage codecov
Code Quality Code Quality: Python
Total Alerts
Codacy Badge
codebeat badge
Citation DOI
Documentation Documentation Status

Module Contents

Python 3

arch is Python 3 only. Version 4.8 is the final version that supported Python 2.7.

Documentation

Documentation from the main branch is hosted on my github pages.

Released documentation is hosted on read the docs.

More about ARCH

More information about ARCH and related models is available in the notes and research available at Kevin Sheppard's site.

Contributing

Contributions are welcome. There are opportunities at many levels to contribute:

  • Implement new volatility process, e.g., FIGARCH
  • Improve docstrings where unclear or with typos
  • Provide examples, preferably in the form of IPython notebooks

Examples

Volatility Modeling

  • Mean models
    • Constant mean
    • Heterogeneous Autoregression (HAR)
    • Autoregression (AR)
    • Zero mean
    • Models with and without exogenous regressors
  • Volatility models
    • ARCH
    • GARCH
    • TARCH
    • EGARCH
    • EWMA/RiskMetrics
  • Distributions
    • Normal
    • Student's T
    • Generalized Error Distribution

See the univariate volatility example notebook for a more complete overview.

import datetime as dt
import pandas_datareader.data as web
st = dt.datetime(1990,1,1)
en = dt.datetime(2014,1,1)
data = web.get_data_yahoo('^FTSE', start=st, end=en)
returns = 100 * data['Adj Close'].pct_change().dropna()

from arch import arch_model
am = arch_model(returns)
res = am.fit()

Unit Root Tests

  • Augmented Dickey-Fuller
  • Dickey-Fuller GLS
  • Phillips-Perron
  • KPSS
  • Zivot-Andrews
  • Variance Ratio tests

See the unit root testing example notebook for examples of testing series for unit roots.

Cointegration Testing and Analysis

  • Tests
    • Engle-Granger Test
    • Phillips-Ouliaris Test
  • Cointegration Vector Estimation
    • Canonical Cointegrating Regression
    • Dynamic OLS
    • Fully Modified OLS

See the cointegration testing example notebook for examples of testing series for cointegration.

Bootstrap

  • Bootstraps
    • IID Bootstrap
    • Stationary Bootstrap
    • Circular Block Bootstrap
    • Moving Block Bootstrap
  • Methods
    • Confidence interval construction
    • Covariance estimation
    • Apply method to estimate model across bootstraps
    • Generic Bootstrap iterator

See the bootstrap example notebook for examples of bootstrapping the Sharpe ratio and a Probit model from statsmodels.

# Import data
import datetime as dt
import pandas as pd
import numpy as np
import pandas_datareader.data as web
start = dt.datetime(1951,1,1)
end = dt.datetime(2014,1,1)
sp500 = web.get_data_yahoo('^GSPC', start=start, end=end)
start = sp500.index.min()
end = sp500.index.max()
monthly_dates = pd.date_range(start, end, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()

# Function to compute parameters
def sharpe_ratio(x):
    mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
    return np.array([mu, sigma, mu / sigma])

# Bootstrap confidence intervals
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')

Multiple Comparison Procedures

  • Test of Superior Predictive Ability (SPA), also known as the Reality Check or Bootstrap Data Snooper
  • Stepwise (StepM)
  • Model Confidence Set (MCS)

See the multiple comparison example notebook for examples of the multiple comparison procedures.

Long-run Covariance Estimation

Kernel-based estimators of long-run covariance including the Bartlett kernel which is known as Newey-West in econometrics. Automatic bandwidth selection is available for all of the covariance estimators.

from arch.covariance.kernel import Bartlett
from arch.data import nasdaq
data = nasdaq.load()
returns = data[["Adj Close"]].pct_change().dropna()

cov_est = Bartlett(returns ** 2)
# Get the long-run covariance
cov_est.cov.long_run

Requirements

These requirements reflect the testing environment. It is possible that arch will work with older versions.

  • Python (3.7+)
  • NumPy (1.17+)
  • SciPy (1.3+)
  • Pandas (1.0+)
  • statsmodels (0.11+)
  • matplotlib (3+), optional
  • property-cached (1.6.4+), optional

Optional Requirements

  • Numba (0.49+) will be used if available and when installed without building the binary modules. In order to ensure that these are not built, you must set the environment variable ARCH_NO_BINARY=1 and install without the wheel.
export ARCH_NO_BINARY=1
pip install arch --no-binary arch

or if using Powershell on windows

$env:ARCH_NO_BINARY=1
pip install arch --no-binary arch

If you have locally cloned the repo, you can install without building the binary modules by running

python setup.py install --no-binary

or by setting the environment variable ARCH_NO_BINARY=1.

  • jupyter and notebook are required to run the notebooks

Installing

Standard installation with a compiler requires Cython. If you do not have a compiler installed, the arch should still install. You will see a warning but this can be ignored. If you don't have a compiler, numba is strongly recommended.

pip

Releases are available PyPI and can be installed with pip.

pip install arch
export ARCH_NO_BINARY=1
pip install arch --no-binary arch

You can alternatively install the latest version from GitHub

pip install git+https://github.com/bashtage/arch.git

Setting the environment variable ARCH_NO_BINARY=1 can be used to disable compilation of the extensions.

Anaconda

conda users can install from conda-forge,

conda install arch-py -c conda-forge

Note: The conda-forge name is arch-py.

Windows

Building extension using the community edition of Visual Studio is simple when using Python 3.7 or later. Building is not necessary when numba is installed since just-in-time compiled code (numba) runs as fast as ahead-of-time compiled extensions.

Developing

The development requirements are:

  • Cython (0.29+, if not using --no-binary)
  • pytest (For tests)
  • sphinx (to build docs)
  • sphinx_material (to build docs)
  • jupyter, notebook and nbsphinx (to build docs)

Installation Notes

  1. If Cython is not installed, the package will be installed as-if --no-binary was used.
  2. Setup does not verify these requirements. Please ensure these are installed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arch-5.0.1.tar.gz (937.1 kB view details)

Uploaded Source

Built Distributions

arch-5.0.1-cp39-cp39-win_amd64.whl (848.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

arch-5.0.1-cp39-cp39-win32.whl (809.9 kB view details)

Uploaded CPython 3.9 Windows x86

arch-5.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (903.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

arch-5.0.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (868.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ x86-64

arch-5.0.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (854.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

arch-5.0.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (900.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

arch-5.0.1-cp39-cp39-macosx_10_9_x86_64.whl (876.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

arch-5.0.1-cp38-cp38-win_amd64.whl (849.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

arch-5.0.1-cp38-cp38-win32.whl (810.9 kB view details)

Uploaded CPython 3.8 Windows x86

arch-5.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (902.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

arch-5.0.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (869.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ x86-64

arch-5.0.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (855.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

arch-5.0.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (900.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

arch-5.0.1-cp38-cp38-macosx_10_9_x86_64.whl (873.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

arch-5.0.1-cp37-cp37m-win_amd64.whl (844.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

arch-5.0.1-cp37-cp37m-win32.whl (806.1 kB view details)

Uploaded CPython 3.7m Windows x86

arch-5.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (899.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

arch-5.0.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (875.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ x86-64

arch-5.0.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (860.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

arch-5.0.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (896.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

arch-5.0.1-cp37-cp37m-macosx_10_9_x86_64.whl (873.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file arch-5.0.1.tar.gz.

File metadata

  • Download URL: arch-5.0.1.tar.gz
  • Upload date:
  • Size: 937.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for arch-5.0.1.tar.gz
Algorithm Hash digest
SHA256 db5728cdf7192f94b993a6ccf122ad41f6489a398a52384b75f261c5bdac14ba
MD5 4301d794fd334f010b41b00fdd9fc4ed
BLAKE2b-256 9899a53730ca3fdf0746975bc0f0ad1d0815f5bca6b3806181d55223e279b653

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: arch-5.0.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 848.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.0

File hashes

Hashes for arch-5.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e50c1775168bb07458b3560e9596fe383c8ce764db0ff80948712b7740e4d905
MD5 a6f46afde8047b65f30062dbf1cea998
BLAKE2b-256 23541cc061f50a977e83fdd41dce6e665dee89b3a2122ee79a4fd6645ea30560

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: arch-5.0.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 809.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.0

File hashes

Hashes for arch-5.0.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e7233aaadac2f3368960bd5229895f3cc1c037e54e1decbd6954d051f6479d7c
MD5 67ad48a2027c08781e4ff917410bfce8
BLAKE2b-256 71648fb1223261764eb10639ce6a7d93e3080a5baa2c193e2b8563f5256f0e95

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a2665f0bec7d3143bf5dd31711dc765ad39052b660bb7620e3985ee33fec6cc9
MD5 bad6cffa2d4fee05b6f72ef5f4f8bdfb
BLAKE2b-256 5db8a993e887bfd7863e328a9ce87e9e7960cbc79a50bb70aa1b9ee1f9442d46

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

  • Download URL: arch-5.0.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
  • Upload date:
  • Size: 868.5 kB
  • Tags: CPython 3.9, manylinux: glibc 2.5+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for arch-5.0.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5a794a2fd6e922d860792fb934e59fe70c8c1a317935d5c6f2f1c234d74bae83
MD5 27b9cc046cba91e32da756a98cf142b4
BLAKE2b-256 8a2bfd46e5bf78944f3f044695cf2214e959d5b48eac054451123a38be512c38

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: arch-5.0.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 854.7 kB
  • Tags: CPython 3.9, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for arch-5.0.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 ab889ebe0a224a75a85590c6e024a55104ba82a8fc75e4b29a79271928f60264
MD5 df56205b29be3405d189da5f810c5d2d
BLAKE2b-256 245b17076540a84f128ea0d7f96151e46137a846832f754514ddd45bdfaae981

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for arch-5.0.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d2222bec3be8faab94d4f2adc0578d2e0b48fb7551e51a91bd5df06cc302621d
MD5 06e0a4fe8274901f5eef5d120c5d5c35
BLAKE2b-256 021b900a822a49a05606bc57159408753a5c3163e30ca4455f9db0fac65236d2

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: arch-5.0.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 876.8 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for arch-5.0.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 127318c3d70e53703eabed362e24149eb388c372efbe73d9098825c70d4dd58d
MD5 0a5424e8423d4f5ce6365e0b24f65f6b
BLAKE2b-256 1f4d532236639e22e48b7776d8845818096f74c435358eec3e6aec6c8cdbfbe9

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: arch-5.0.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 849.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.0

File hashes

Hashes for arch-5.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5ec4c8a9f451fd2727ae1079ce17dd55103465db1b1ea9977550853d5749d7e9
MD5 36936049e4a63d57b954d620549c4049
BLAKE2b-256 32a1012549de889a8176b51e2de06f46204d7ffc4272cfc8799b2be156c79168

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: arch-5.0.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 810.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.0

File hashes

Hashes for arch-5.0.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 07ec784a5771d65392c130c9f6e507d2ea996c02330a6a9b43e28df688703e0a
MD5 2353d72e1b4cb13a25bf070607227156
BLAKE2b-256 e354b024a46baf9dacca94e47b4e07bae2edaf72b3f770dc00e9e8f9e3b2b9a6

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 afc6af1b3bb6bfd3dd08c9cccca4414141be3ea7068843144dd79d755926bd09
MD5 18211aac373ef6919069fec4dfd10dd5
BLAKE2b-256 391e69c0d168248093deae7c191af3df16c61b1b4e318f833a8a268ed7206544

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

  • Download URL: arch-5.0.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
  • Upload date:
  • Size: 869.6 kB
  • Tags: CPython 3.8, manylinux: glibc 2.5+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.11

File hashes

Hashes for arch-5.0.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a0f0d3da5501e7a3420490dae22dde65b726e4c5d14078c1e5081603df11e6cf
MD5 f58bbde073151f617f1f02f068e3bf4d
BLAKE2b-256 33d8fc7952d686b9b187aa1e0ffde3a9be24d01d952d26c14bb16d119d73604a

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: arch-5.0.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 855.4 kB
  • Tags: CPython 3.8, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.11

File hashes

Hashes for arch-5.0.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 71a7d7edb71f55f6e1fc89548e291930a82a0cd2cf8ff105d3c834d2df869b0c
MD5 c9490e92810215761057556f3555c8a7
BLAKE2b-256 68f2c9c647daeddde5107407e4074745ecea663785a3c2aa83a6788a6d7a6a2c

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for arch-5.0.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b82accac5025e1845249150d8001895ecf8e5ab42af49915e4bf7f3f8713b8a8
MD5 26ccd742b3523f9efd3c8f8e2259ebf9
BLAKE2b-256 ab3066ac1dad0f170322c7328299b94d5e73d22662414886104eb45fd7f83138

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: arch-5.0.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 873.9 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.11

File hashes

Hashes for arch-5.0.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4ba553e0383caced353946f2e66d32f1e36fb8e012b9df774477fd3c3c607b70
MD5 7186a8b662ed96b014fb84f8615f4956
BLAKE2b-256 d45dba1f805d31547f2c54f443ecd61f05972cef0482f3fa1d08a6c095b5d7a4

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: arch-5.0.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 844.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.5

File hashes

Hashes for arch-5.0.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d8d2dd9846c37dd699f19ab9d4772068b346386a7a8fed9f3f8d6f398969dbd0
MD5 a8b4f51d7aa5bf5c244412d83de8a50b
BLAKE2b-256 4188fd4a2fc7da678aa05c1870dee512121c582b14717eb698131f772e0ef345

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: arch-5.0.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 806.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.5

File hashes

Hashes for arch-5.0.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3edf1c0b7fa50adc5e17c5d1a422c41242ed52483d234381cde2e4278503e294
MD5 5c5fed3bcf8245e4424066cf867b56e1
BLAKE2b-256 c60be4d662adf68755394413385bcc845d054c1291b4753ccf2544b87cb16343

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 825dca031a83135ccf5210ce3342f4d2ea3f9051c2730e6d64c6d98e0cf56884
MD5 24400bee8455285887945f91b1da118b
BLAKE2b-256 6af21e8284386506bdcbdf34d46c021ec1841ccb3985d631409e3b4393236744

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

  • Download URL: arch-5.0.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
  • Upload date:
  • Size: 875.3 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.5+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.11

File hashes

Hashes for arch-5.0.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d8d59e3ebca507e5365414f2a7843e9e5c1ab84892e2e9974c1d3091ef331030
MD5 c130d5d0ba1caab4c4479884a279805f
BLAKE2b-256 f9003e2a893845c9bf8e0cf2caee03af7b589e6495140927e8a822b47a256581

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: arch-5.0.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 860.5 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.11

File hashes

Hashes for arch-5.0.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 c437a64fe1b06e7fdb1d813ded0a4c08f6408f7f8be4703d879b759d8e0830cd
MD5 a7c642c8c75c0fd064262b8a6a517633
BLAKE2b-256 b7d5b593b8ef0530f789b18b552333e076dedba79a02ac90085bbc9eaf6e7032

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for arch-5.0.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 008e6decb4e880d6bd4cacb1bd3d73ab68c178e5db505a867fb7a0c408565ef1
MD5 b14fef0fc350018a1c35af816ae35aea
BLAKE2b-256 f00817bdabfcea094f2dad460579e0a7c156bbaf5caed868cfbbca33f4307b3d

See more details on using hashes here.

File details

Details for the file arch-5.0.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: arch-5.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 873.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.11

File hashes

Hashes for arch-5.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5c840ef907ee25143f41a93ca9255be2b6758cd1e986534494811017154ce5dc
MD5 81ff5083e313893f62c6fd34b841f398
BLAKE2b-256 72afa410d2961803f0752acae3e08721209d70370ef86ea604150df0640bb325

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page