Skip to main content

ARCH for Python

Project description

arch

arch

Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used to improve performance)

Metric
Latest Release PyPI version
conda-forge version
Continuous Integration Build Status
Appveyor Build Status
Coverage codecov
Code Quality Code Quality: Python
Total Alerts
Codacy Badge
codebeat badge
Citation DOI
Documentation Documentation Status

Module Contents

Python 3

arch is Python 3 only. Version 4.8 is the final version that supported Python 2.7.

Documentation

Documentation from the main branch is hosted on my github pages.

Released documentation is hosted on read the docs.

More about ARCH

More information about ARCH and related models is available in the notes and research available at Kevin Sheppard's site.

Contributing

Contributions are welcome. There are opportunities at many levels to contribute:

  • Implement new volatility process, e.g., FIGARCH
  • Improve docstrings where unclear or with typos
  • Provide examples, preferably in the form of IPython notebooks

Examples

Volatility Modeling

  • Mean models
    • Constant mean
    • Heterogeneous Autoregression (HAR)
    • Autoregression (AR)
    • Zero mean
    • Models with and without exogenous regressors
  • Volatility models
    • ARCH
    • GARCH
    • TARCH
    • EGARCH
    • EWMA/RiskMetrics
  • Distributions
    • Normal
    • Student's T
    • Generalized Error Distribution

See the univariate volatility example notebook for a more complete overview.

import datetime as dt
import pandas_datareader.data as web
st = dt.datetime(1990,1,1)
en = dt.datetime(2014,1,1)
data = web.get_data_yahoo('^FTSE', start=st, end=en)
returns = 100 * data['Adj Close'].pct_change().dropna()

from arch import arch_model
am = arch_model(returns)
res = am.fit()

Unit Root Tests

  • Augmented Dickey-Fuller
  • Dickey-Fuller GLS
  • Phillips-Perron
  • KPSS
  • Zivot-Andrews
  • Variance Ratio tests

See the unit root testing example notebook for examples of testing series for unit roots.

Cointegration Testing and Analysis

  • Tests
    • Engle-Granger Test
    • Phillips-Ouliaris Test
  • Cointegration Vector Estimation
    • Canonical Cointegrating Regression
    • Dynamic OLS
    • Fully Modified OLS

See the cointegration testing example notebook for examples of testing series for cointegration.

Bootstrap

  • Bootstraps
    • IID Bootstrap
    • Stationary Bootstrap
    • Circular Block Bootstrap
    • Moving Block Bootstrap
  • Methods
    • Confidence interval construction
    • Covariance estimation
    • Apply method to estimate model across bootstraps
    • Generic Bootstrap iterator

See the bootstrap example notebook for examples of bootstrapping the Sharpe ratio and a Probit model from statsmodels.

# Import data
import datetime as dt
import pandas as pd
import numpy as np
import pandas_datareader.data as web
start = dt.datetime(1951,1,1)
end = dt.datetime(2014,1,1)
sp500 = web.get_data_yahoo('^GSPC', start=start, end=end)
start = sp500.index.min()
end = sp500.index.max()
monthly_dates = pd.date_range(start, end, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()

# Function to compute parameters
def sharpe_ratio(x):
    mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
    return np.array([mu, sigma, mu / sigma])

# Bootstrap confidence intervals
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')

Multiple Comparison Procedures

  • Test of Superior Predictive Ability (SPA), also known as the Reality Check or Bootstrap Data Snooper
  • Stepwise (StepM)
  • Model Confidence Set (MCS)

See the multiple comparison example notebook for examples of the multiple comparison procedures.

Long-run Covariance Estimation

Kernel-based estimators of long-run covariance including the Bartlett kernel which is known as Newey-West in econometrics. Automatic bandwidth selection is available for all of the covariance estimators.

from arch.covariance.kernel import Bartlett
from arch.data import nasdaq
data = nasdaq.load()
returns = data[["Adj Close"]].pct_change().dropna()

cov_est = Bartlett(returns ** 2)
# Get the long-run covariance
cov_est.cov.long_run

Requirements

These requirements reflect the testing environment. It is possible that arch will work with older versions.

  • Python (3.7+)
  • NumPy (1.17+)
  • SciPy (1.3+)
  • Pandas (1.0+)
  • statsmodels (0.11+)
  • matplotlib (3+), optional
  • property-cached (1.6.4+), optional

Optional Requirements

  • Numba (0.49+) will be used if available and when installed without building the binary modules. In order to ensure that these are not built, you must set the environment variable ARCH_NO_BINARY=1 and install without the wheel.
export ARCH_NO_BINARY=1
python -m pip install arch

or if using Powershell on windows

$env:ARCH_NO_BINARY=1
python -m pip install arch
  • jupyter and notebook are required to run the notebooks

Installing

Standard installation with a compiler requires Cython. If you do not have a compiler installed, the arch should still install. You will see a warning but this can be ignored. If you don't have a compiler, numba is strongly recommended.

pip

Releases are available PyPI and can be installed with pip.

pip install arch

You can alternatively install the latest version from GitHub

pip install git+https://github.com/bashtage/arch.git

Setting the environment variable ARCH_NO_BINARY=1 can be used to disable compilation of the extensions.

Anaconda

conda users can install from conda-forge,

conda install arch-py -c conda-forge

Note: The conda-forge name is arch-py.

Windows

Building extension using the community edition of Visual Studio is simple when using Python 3.7 or later. Building is not necessary when numba is installed since just-in-time compiled code (numba) runs as fast as ahead-of-time compiled extensions.

Developing

The development requirements are:

  • Cython (0.29+, if not using ARCH_NO_BINARY=1)
  • pytest (For tests)
  • sphinx (to build docs)
  • sphinx_material (to build docs)
  • jupyter, notebook and nbsphinx (to build docs)

Installation Notes

  1. If Cython is not installed, the package will be installed as-if ARCH_NO_BINARY=1 was set.
  2. Setup does not verify these requirements. Please ensure these are installed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arch-5.4.0.tar.gz (3.4 MB view details)

Uploaded Source

Built Distributions

arch-5.4.0-cp311-cp311-win_amd64.whl (852.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

arch-5.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (917.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

arch-5.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (893.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

arch-5.4.0-cp311-cp311-macosx_11_0_arm64.whl (859.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

arch-5.4.0-cp311-cp311-macosx_10_9_x86_64.whl (889.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

arch-5.4.0-cp310-cp310-win_amd64.whl (854.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

arch-5.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (918.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

arch-5.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (894.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

arch-5.4.0-cp310-cp310-macosx_11_0_arm64.whl (868.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

arch-5.4.0-cp310-cp310-macosx_10_9_x86_64.whl (900.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

arch-5.4.0-cp39-cp39-win_amd64.whl (856.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

arch-5.4.0-cp39-cp39-win32.whl (823.0 kB view details)

Uploaded CPython 3.9 Windows x86

arch-5.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (920.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

arch-5.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (896.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

arch-5.4.0-cp39-cp39-macosx_11_0_arm64.whl (863.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

arch-5.4.0-cp39-cp39-macosx_10_9_x86_64.whl (893.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

arch-5.4.0-cp38-cp38-win_amd64.whl (856.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

arch-5.4.0-cp38-cp38-win32.whl (823.3 kB view details)

Uploaded CPython 3.8 Windows x86

arch-5.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (920.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

arch-5.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (896.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

arch-5.4.0-cp38-cp38-macosx_11_0_arm64.whl (860.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

arch-5.4.0-cp38-cp38-macosx_10_9_x86_64.whl (890.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file arch-5.4.0.tar.gz.

File metadata

  • Download URL: arch-5.4.0.tar.gz
  • Upload date:
  • Size: 3.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.12

File hashes

Hashes for arch-5.4.0.tar.gz
Algorithm Hash digest
SHA256 a1e83d4ffc5c09516230e58dc9f9c4af55445e2005507a51896f7ea120d9a5bd
MD5 2ab28ee33336417075cfb7a7bcbf4fc9
BLAKE2b-256 f0f64306a2c1171e562806e927632398bc3a0eeb6063cbb99e781820eb62aecc

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: arch-5.4.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 852.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for arch-5.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 260bafa16102ece9d480c6ddfa05ad20e6414989183775a98610ed0488c4fc62
MD5 e1c786eb39a44280be21c936d261d8dd
BLAKE2b-256 f70acc8ee8c50fc4fee87d7a5f013a31fadd36fa2a6b21dd3c8a0e4eb2738bbb

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c435785852e747e66621558b37e44fb7c201586f86128f310e82ac842013b121
MD5 77da7586b37b25e0a3a7777c6f0c0d8f
BLAKE2b-256 7c2730da096b8ec5b3c293aa4dc76402ec42ca0a6c778d142f088422f4e06cb4

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-5.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6fa0f56cb5299d5e529392fb241330f78388379ab96c8d4343c9521b5df53ced
MD5 28cdf66888e205e048f5e8a179d1b37a
BLAKE2b-256 001ce76e196203edf62e51ffe84b221bb7e6734e6ef02da4818efc2f47533bff

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-5.4.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5b5603f21b5ef36d9183a0c0de600a0e1f63dd87fd07b9884c38aa0bc1bf6d5e
MD5 3c4cfacfbcf77872d350a1c81e16fcd3
BLAKE2b-256 87d25231a6912e185b6b2999e42b880f033bc7828e60c943258031aff3b35e5a

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.4.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 50c01099273df42a3d2d82b8ba7c2fc4ee65899977ea0dc577f41ddd9b6ebf09
MD5 2060199aa0d810298cb64a983690cc3e
BLAKE2b-256 c13217091d11a9647a59828f0da0c830d619111619507c1e9507ebb596f24810

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: arch-5.4.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 854.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for arch-5.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 690684728d7b3d87c2eecb2016fbe7b012a47375d7f26731d9c2f3787904e60a
MD5 023bc7e7f62903cc3990610e3b0bde40
BLAKE2b-256 fdcc87547d8e59a74ee570472ff92a97be86c40b93c5213ab23deb56e4923246

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c56d5d88175e81a979288495fd735d2620224466028ccd45f58e0139a64253b7
MD5 9f5b53b63372265f2e5274478cc6b235
BLAKE2b-256 4721bd5b9324617c80024c0c9ce0ad346b2cb14e7b534b1b03145539f7a7c880

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-5.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d154dbd39747b1eeb2f5c16f9857063e529610cabb9a7bfb74a466fb39bd19ac
MD5 26ebb715d51591803927fb03f06476c5
BLAKE2b-256 bbac828ace476fe9955550d6e4bb5e7e5d1cdaec740293e3e80625cef747e111

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-5.4.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b59b079a290613306809a34b4d00979c45537daeeee97e33cdce7765567a1978
MD5 36a6a25c5c4f7875fc06fab88a654d78
BLAKE2b-256 8dde22c799bb2cbf111358b9aa82be33b38cc2b791cedb64b2c09755c2795173

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.4.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f5ae6846e568f3f3884e1bfcac2970106e42ffe5943973977f79539d0c269bdf
MD5 c02783312a53614c6b528fec21c45bb0
BLAKE2b-256 83495be86352a706f887fc19e274e9fe31659dead299e1aacd804e8da0763d5c

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: arch-5.4.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 856.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for arch-5.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 adb7e550b471f46e30f007dffd23dc2ab7ece7cb2a733bc613603c88231e4c5b
MD5 63668bfcddc1990f0cd86df38f6734fc
BLAKE2b-256 b64d203aa0f84ccac029026b99769fc0c27789c81a13096711dd6d74b78912a0

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: arch-5.4.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 823.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for arch-5.4.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 be36178d9faa4916aa266e6b4f2b98aa768db7cc4197b5f77cd5203ecede3e3b
MD5 bc3e0c58f14fb7a94b644df83a42fd09
BLAKE2b-256 9e9a8a26ef16d2f63dbe79176aee8bb9cc3b99036c56f1d613ce91ba49c73e54

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d2a22fe5f2a3e7c71cf2cb0c675cd27f5185c1b0c6b0e6f420179495db8a08ea
MD5 8c7fd34593d35c121bb852dc01e18780
BLAKE2b-256 54a0b9a712389308e72534163ce630bc67b7c984bb0ad1cfa6201a3d70f94132

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-5.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 93a5dfaad0008828de0884bd5c4f4b606276a2be51aebd5e66b457dfbf5eb800
MD5 9e837d4edf8f559e69baeb9c59e3248d
BLAKE2b-256 e607456b5a8150f3d2c4fd405972bdaf1e9d5ee439380d1bdb86a7208e915126

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-5.4.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4277327893bd59f83271828cce5b5c6e750d6d17b8c6b9b75d43e28a5a8e5f16
MD5 65a25ea154f830dee25073fb513eb634
BLAKE2b-256 a6f90181b4e9213a448ccf116306ab4235ba7c9a8aec767511ca2429dbbfe1d3

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.4.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4c5e5a22f8731806f49279a1dee8230bbb74c0b768e371f703ea3bf14c0d5220
MD5 f6b5e6d1ca7de0c13e186a0fb555d1ec
BLAKE2b-256 b918dfeeb8677b5f7bd34db8ccc7f23a0b1f58d307b0c0f7b228a54bffa7db72

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: arch-5.4.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 856.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for arch-5.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8d332c42cab50019a5c2d6934487db9aa55c4458764558dca323dd25e2a1c8d7
MD5 5d3cd3d0c006e1ec5e5607bda9442151
BLAKE2b-256 05f1fcb11d3ad6ece5ed42986d0ea767c9b77139936b87e19fcdce292e77b0e9

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: arch-5.4.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 823.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for arch-5.4.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 44f006f715db3e0da3eb672acc3e4462431da468182e922e1b46f5312484f5b6
MD5 36c1bfc14759cbb8d343d5b85a14013d
BLAKE2b-256 91cf1fb1878541151b585bd83fe6c0cde7b2ab5ac0f2cb3fc1ae4dc430fc5e6d

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 324e7beaef163881b9aa0d633de72072ce4e49a2e7fde5bfdb506af408152806
MD5 968a419f892fd5c2dd90cfb1c2bef658
BLAKE2b-256 0501ae829f075ff1a93ab96539a23df34290b60de6bdaf62a89af47bba6941bd

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-5.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3def1e915c74a87c03e48b7160cc2f8adeab3cd9f9df342d8cad428ffbcb6479
MD5 a9f38a76f21af65deb5d43c23f3f317e
BLAKE2b-256 3d8dfb515e94dc0edfa9db0ebe74b612e507771ac849ebc28be95f761965a20d

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-5.4.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 364228aa5ed3c24e8b86bf88e98002d0ffa015da1989c074eb32cc057ca39bba
MD5 ab49ae825d11e02c52cacbc2dca4bdbe
BLAKE2b-256 e6c68fdf5a0840de581469a0154fa63dee5283dab3fac1ad6debd8b19e8cd566

See more details on using hashes here.

File details

Details for the file arch-5.4.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.4.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2f1ac3faa6f4866fa0e8658fa6161e383cea1b97b073dd5046cd7dd2bb44bb19
MD5 17eb0217963fe7f767d67f02b4fe4e4e
BLAKE2b-256 6c1519e64a26be331ca45489770f262df1eb3ab3ed105b0d5e25ba7b44776d84

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page