Skip to main content

ARCH for Python

Project description

arch

arch

Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used to improve performance)

Metric
Latest Release PyPI version
conda-forge version
Continuous Integration Build Status
Appveyor Build Status
Coverage codecov
Code Quality Code Quality: Python
Total Alerts
Codacy Badge
codebeat badge
Citation DOI
Documentation Documentation Status

Module Contents

Python 3

arch is Python 3 only. Version 4.8 is the final version that supported Python 2.7.

Documentation

Documentation from the main branch is hosted on my github pages.

Released documentation is hosted on read the docs.

More about ARCH

More information about ARCH and related models is available in the notes and research available at Kevin Sheppard's site.

Contributing

Contributions are welcome. There are opportunities at many levels to contribute:

  • Implement new volatility process, e.g., FIGARCH
  • Improve docstrings where unclear or with typos
  • Provide examples, preferably in the form of IPython notebooks

Examples

Volatility Modeling

  • Mean models
    • Constant mean
    • Heterogeneous Autoregression (HAR)
    • Autoregression (AR)
    • Zero mean
    • Models with and without exogenous regressors
  • Volatility models
    • ARCH
    • GARCH
    • TARCH
    • EGARCH
    • EWMA/RiskMetrics
  • Distributions
    • Normal
    • Student's T
    • Generalized Error Distribution

See the univariate volatility example notebook for a more complete overview.

import datetime as dt
import pandas_datareader.data as web
st = dt.datetime(1990,1,1)
en = dt.datetime(2014,1,1)
data = web.get_data_yahoo('^FTSE', start=st, end=en)
returns = 100 * data['Adj Close'].pct_change().dropna()

from arch import arch_model
am = arch_model(returns)
res = am.fit()

Unit Root Tests

  • Augmented Dickey-Fuller
  • Dickey-Fuller GLS
  • Phillips-Perron
  • KPSS
  • Zivot-Andrews
  • Variance Ratio tests

See the unit root testing example notebook for examples of testing series for unit roots.

Cointegration Testing and Analysis

  • Tests
    • Engle-Granger Test
    • Phillips-Ouliaris Test
  • Cointegration Vector Estimation
    • Canonical Cointegrating Regression
    • Dynamic OLS
    • Fully Modified OLS

See the cointegration testing example notebook for examples of testing series for cointegration.

Bootstrap

  • Bootstraps
    • IID Bootstrap
    • Stationary Bootstrap
    • Circular Block Bootstrap
    • Moving Block Bootstrap
  • Methods
    • Confidence interval construction
    • Covariance estimation
    • Apply method to estimate model across bootstraps
    • Generic Bootstrap iterator

See the bootstrap example notebook for examples of bootstrapping the Sharpe ratio and a Probit model from statsmodels.

# Import data
import datetime as dt
import pandas as pd
import numpy as np
import pandas_datareader.data as web
start = dt.datetime(1951,1,1)
end = dt.datetime(2014,1,1)
sp500 = web.get_data_yahoo('^GSPC', start=start, end=end)
start = sp500.index.min()
end = sp500.index.max()
monthly_dates = pd.date_range(start, end, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()

# Function to compute parameters
def sharpe_ratio(x):
    mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
    return np.array([mu, sigma, mu / sigma])

# Bootstrap confidence intervals
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')

Multiple Comparison Procedures

  • Test of Superior Predictive Ability (SPA), also known as the Reality Check or Bootstrap Data Snooper
  • Stepwise (StepM)
  • Model Confidence Set (MCS)

See the multiple comparison example notebook for examples of the multiple comparison procedures.

Long-run Covariance Estimation

Kernel-based estimators of long-run covariance including the Bartlett kernel which is known as Newey-West in econometrics. Automatic bandwidth selection is available for all of the covariance estimators.

from arch.covariance.kernel import Bartlett
from arch.data import nasdaq
data = nasdaq.load()
returns = data[["Adj Close"]].pct_change().dropna()

cov_est = Bartlett(returns ** 2)
# Get the long-run covariance
cov_est.cov.long_run

Requirements

These requirements reflect the testing environment. It is possible that arch will work with older versions.

  • Python (3.7+)
  • NumPy (1.17+)
  • SciPy (1.3+)
  • Pandas (1.0+)
  • statsmodels (0.11+)
  • matplotlib (3+), optional
  • property-cached (1.6.4+), optional

Optional Requirements

  • Numba (0.49+) will be used if available and when installed without building the binary modules. In order to ensure that these are not built, you must set the environment variable ARCH_NO_BINARY=1 and install without the wheel.
export ARCH_NO_BINARY=1
python -m pip install arch

or if using Powershell on windows

$env:ARCH_NO_BINARY=1
python -m pip install arch
  • jupyter and notebook are required to run the notebooks

Installing

Standard installation with a compiler requires Cython. If you do not have a compiler installed, the arch should still install. You will see a warning but this can be ignored. If you don't have a compiler, numba is strongly recommended.

pip

Releases are available PyPI and can be installed with pip.

pip install arch

You can alternatively install the latest version from GitHub

pip install git+https://github.com/bashtage/arch.git

Setting the environment variable ARCH_NO_BINARY=1 can be used to disable compilation of the extensions.

Anaconda

conda users can install from conda-forge,

conda install arch-py -c conda-forge

Note: The conda-forge name is arch-py.

Windows

Building extension using the community edition of Visual Studio is simple when using Python 3.7 or later. Building is not necessary when numba is installed since just-in-time compiled code (numba) runs as fast as ahead-of-time compiled extensions.

Developing

The development requirements are:

  • Cython (0.29+, if not using ARCH_NO_BINARY=1)
  • pytest (For tests)
  • sphinx (to build docs)
  • sphinx-immaterial (to build docs)
  • jupyter, notebook and nbsphinx (to build docs)

Installation Notes

  1. If Cython is not installed, the package will be installed as-if ARCH_NO_BINARY=1 was set.
  2. Setup does not verify these requirements. Please ensure these are installed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arch-5.5.0.tar.gz (3.4 MB view details)

Uploaded Source

Built Distributions

arch-5.5.0-cp311-cp311-win_amd64.whl (852.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

arch-5.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (917.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

arch-5.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (892.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

arch-5.5.0-cp311-cp311-macosx_11_0_arm64.whl (860.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

arch-5.5.0-cp311-cp311-macosx_10_9_x86_64.whl (890.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

arch-5.5.0-cp310-cp310-win_amd64.whl (854.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

arch-5.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (918.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

arch-5.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (894.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

arch-5.5.0-cp310-cp310-macosx_11_0_arm64.whl (868.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

arch-5.5.0-cp310-cp310-macosx_10_9_x86_64.whl (900.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

arch-5.5.0-cp39-cp39-win_amd64.whl (856.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

arch-5.5.0-cp39-cp39-win32.whl (823.5 kB view details)

Uploaded CPython 3.9 Windows x86

arch-5.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (920.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

arch-5.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (895.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

arch-5.5.0-cp39-cp39-macosx_11_0_arm64.whl (863.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

arch-5.5.0-cp39-cp39-macosx_10_9_x86_64.whl (893.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

arch-5.5.0-cp38-cp38-win_amd64.whl (856.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

arch-5.5.0-cp38-cp38-win32.whl (823.9 kB view details)

Uploaded CPython 3.8 Windows x86

arch-5.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (920.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

arch-5.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (896.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

arch-5.5.0-cp38-cp38-macosx_11_0_arm64.whl (860.6 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

arch-5.5.0-cp38-cp38-macosx_10_9_x86_64.whl (890.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file arch-5.5.0.tar.gz.

File metadata

  • Download URL: arch-5.5.0.tar.gz
  • Upload date:
  • Size: 3.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.12

File hashes

Hashes for arch-5.5.0.tar.gz
Algorithm Hash digest
SHA256 00f64304c6fae83ce9e38e54b5cad273ee1171dc8347c793a7a66212c5205848
MD5 de53dbb0ba218a2324cc4b0de62d0944
BLAKE2b-256 bee3111a8c6990f51f90de0affbfa2b2896f2166aa52525ee73537e0839b73d6

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: arch-5.5.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 852.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for arch-5.5.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2f3281bbcbf211f7da46315badd3d475d44b53809d4170ffd6c70ecb5f3a4245
MD5 da26068b9a58b96a345820c1beb58247
BLAKE2b-256 c20ee615aed9418388e5959d65ddf51d7dc42cd6cb305a18db79d48b363d4cd6

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dd5a08cc0813827570b72dbb003a0d27e1203c3efb9110bf23a3a8c9ba0ef9a5
MD5 5207caf5122a382b7ccb5cc131ea3439
BLAKE2b-256 8c06ad51c254637431d1c7cd7202315049676b9311b100d99b2fd8065e49dee3

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-5.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9c6619a9cfde66b356a762387951ff8e5b41a5124fca1adabddd17fad3f62f92
MD5 f434e1189eb93d86dfbb967aeddc080c
BLAKE2b-256 acc749b3c026954be1dd81059ce4fa79bea42c23ba0f07e6d7e644aa59b10df2

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-5.5.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e6e64fdb1f64028763a506a9b7b08d2645995f42f0166789625c8ad77213778d
MD5 b22c459a99e572f1ef9293489fe2bea3
BLAKE2b-256 b6cf161aa399fc847016127d8eb3d38f4df1ff3e6033e0f5ce2f0dc794901016

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.5.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e4be0f70d22742597750161bfb001a2b8eaa0e9986e25976c395cb99d8a8f098
MD5 78881a9e92eb4841b21cb9f3d634c5d9
BLAKE2b-256 372fda349f57cf58797656ab7dd551eda619e142edb23bc0cd0db5a5ebe2ad0f

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: arch-5.5.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 854.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for arch-5.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2efe238224660296f4933a5d4b172ad24837f873084471d687991be6c12d7c81
MD5 769b50ea979ec0246d4f2e3e0486e725
BLAKE2b-256 c079c50322185a0644edcedeb605681c06dc8fa0e04b2e7a0a1e61b33d588b4d

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f195c4e213d7dcf611c7e0313bc03c749e8e375028a66b4895a161fdb9e32aa2
MD5 148afaf4a3da0411c1c23aa94d887cf8
BLAKE2b-256 cf825f8f7ed5087f61dcc809f8fadd95192e66cb8c7c9bd104164ff594d505c4

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-5.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0dc1701408751502d621a717431526072dfe0cdbce726d8d3ae7321440d9086e
MD5 3291346cd1357fdec0d99afef823f4da
BLAKE2b-256 2080b097aa2ae9b3111042f5bcaba949d998da012bb9accd3c06673fbcf954c9

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-5.5.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3122186c244851184c931d4c09e692f4d8456b1376c72474056582022b6638ee
MD5 25ede6f18078f5c9e8f2c2872f4179b4
BLAKE2b-256 47584c5a50f673daa4e648676cc9efed92af7d51e47e44ddc2db648548dd6e89

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.5.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 86054f219a3e2cd0c20cc97be242df2aa3b5f87b0fe33630603c8eab06077905
MD5 9a321d31a30fddcdd3270a4ed540a246
BLAKE2b-256 933233fbf767cdd7340c9e6804fb110122ebc9d0705f7b6d48d645a3eeedfe9b

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: arch-5.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 856.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for arch-5.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3a4e28dcf4af285fa636314946efaaedcfdfb72802910ea84456d07608ebaf37
MD5 e9404007177cd5153059fd62a8b0dcea
BLAKE2b-256 1393228104f3b48bf90d8a117308378f7c5524031cebefdb0df4599bb2b75672

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: arch-5.5.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 823.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for arch-5.5.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c0bca2dc84ae3039f710b7ce52ab90c37e7bafff1fbb17040603ebce00589068
MD5 6cf42a9ce0b0c70b16726248c5abf94a
BLAKE2b-256 323dcf117d01f6f14a294611006908c75e9530fa0cc3daf0ca887900a051428d

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4225c9f75eb604ed7136e48e64a45fd25907cd6cd0837a1b07ee23c2f4d37d19
MD5 26288d2c3c194216e90736dbe534743c
BLAKE2b-256 06c4cae58bae1aaf7881a590070a1a43debf856ca5dca60dadd8e07b044be8bc

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-5.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f1378b1cde193bed518243f14076b458e4533e89790dc10716743a3f877543bc
MD5 8e0fd080b169d99816795cff314460b4
BLAKE2b-256 1083676f24b135a57632dca2c69f7a67a443787afd95d254201e3c2b7f5c6d8c

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-5.5.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fb092711e70e73cd76076224b80636c8162ea75bab82b6fdad60a803c7402ea7
MD5 177f4cf2b365ac5233b104fbbb9db55c
BLAKE2b-256 257b4d3565bb8f4b4f08b7a611d3e6031e68a16078be8423c55225694581e760

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.5.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1cfdf15e84a0e58020c04cc10c6edbabe540ffe0a4feface810fb7702221a904
MD5 ddc83e80c3e0a197bde645e0f8686ddd
BLAKE2b-256 9e0c9dbb64487f7bca27a56f7e91391acfefc67e8828fe7aaac6fec306984cdf

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: arch-5.5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 856.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for arch-5.5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 651d19519e3cf75d8681fe3add8bb403e8e4394b281da029a2ce912065da83fb
MD5 a3c65d49702bda02c7475ef3feec1aea
BLAKE2b-256 e73c32bece99b5ea2312157de6d6afc891e930a84e426dc7faaada2d4befc0a5

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: arch-5.5.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 823.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for arch-5.5.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 fa31869f6d24641457b509d2cfc733fd2e3e4ed43ca6976f91055b76100adc51
MD5 440bc61a2b4542e3c38464514dd4c4ba
BLAKE2b-256 f4593aaa96eb7ee1a178944061656cc8d3536ccb046dc1b3c85cb174c81afcdc

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef012be009675e12922463feebecf20f1aff660202a18dbccf2bc9908f6695e5
MD5 2345e196d130a605a4593f6583ed3847
BLAKE2b-256 32bcc0357b0af5d146c4ac3b30ded469d83e192314b7881cb93f8b0af1a73784

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for arch-5.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d5672bf8550783a0f80a985563d353f050840dbc19e427cd4169654819553413
MD5 2408168859ae024ffa41bf450d8f8c1e
BLAKE2b-256 2b4727331a88408996a3f414aa65af8625fb68ec4826fff9de37b44b04348065

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for arch-5.5.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e36efe894805c79617b06d21268c15eacf0d7faf6fc20b5c28fcd30e8464edca
MD5 c0c96b88fe2141ea0753909195340d31
BLAKE2b-256 ba7ed2b39d31b31e61f08e6f667952e747449f5e33f4c46ce3a2821dbc88b6b6

See more details on using hashes here.

File details

Details for the file arch-5.5.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for arch-5.5.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2bd928df3d222eacae19ddb4d9dfda16a1a9438ecb10a68ecdc126d727921eb8
MD5 5334ef4addf2bbbed88a819b3487d8ef
BLAKE2b-256 5b9de3f1ab5756fd90bbe4ef25b27f9dfe04aa7fcb1f08095a4fb28d985187cd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page